Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы





от неограниченных функций (2-го порядка)

Пусть функция f(x) определена и непрерывна при всех a≤ x< c, а при x=c функция терпит бесконечный разрыв. В этом случае нельзя говорить об интеграле как о пределе интегральных сумм, т.к. этот предел может и не существовать. Интеграл от функции f(x), разрывной точки С, определяется следующим образом:

 

Если предел в правой части равенства существует, то называется несобственным сходящимся интегралом, в противном случае интеграл называется расходящимся.

Если функция f(x) имеет разрыв в левой точке отрезка [c, b], то

Если f(x) имеет разрыв во внутренней точке отрезка [а, b], то полагают:

если оба интеграла в правой части существуют:

Пример 1.

=

интеграл сходится

 

Пример 2

=

интеграл сходится

Пример 3

Интеграл расходится

 







Дата добавления: 2014-12-06; просмотров: 1094. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия