Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частные производные функции нескольких переменных





Определение: Частной переменной по x от функции Z=f(x, y) называется предел отношения частного приращения по x:

к приращению при стремлении к нулю обозначается

Z’x; f’x(x, y) так что

Аналогично частной производной по y от функции Z=f(x, y) называется предел отношения частного приращения по y

к приращению по y стремлении к нулю; обозначается

Z’y; f’y(x, y) так что

Частные производные можно определить так: частной производной по x от функции Z=f(x, y) называется производная по x, выраженная в предположении что y – постоянная. Частной производной по y от функции Z=f(x, y) называется производная по y, вычисленная в предположении что x- постоянная.

Поэтому правила вычисления частных производных совпадают с правилами дифференцирования, функций одной переменной, только надо каждый раз помнить, по какой переменной ищется производная.

Пример 1 Z= arc sin x/y

 

Пример 2.

Аналогично определяются частные производные функций любого числа переменных.

Пример 3. U=2x3-3y2+sinz2

 

9.3. Дифференциальная функция нескольких переменных.

Полное приращение функции Z=f(x, y) равно:

Оно может быть представлено в виде:

Где и – бесконечно малые величины по

 

Определение: Полным дифференциалом функции двух переменных называется главная часть полного приращения функции, линейная относительно приращений независимых переменных по

 

Обозначается dZ или df так что dz=f’x (x, y) Δ x+ f’y (x, y) Δ y

Тогда Δ Z= dz+ + и с точностью до бесконечно малых высшего порядка

Δ Z≈ dz

Приращения Δ x и Δ у независимых переменных называются дифференциалами независимых переменных и обозначаются Δ x= dx; Δ у= dy; тогда

Т.е. полный дифференциал равен сумме произведений частных производных на дифференциалы соответствующих независимых переменных.

Определение: Частным дифференциалом по x функции Z=f(x, y) называется главная часть частного приращения Δ xZ=f(x+ Δ x, y)- f(x, y), пропорциональная приращению x независимой переменной x.

, следовательно,

Аналогично

Частный дифференциал функции двух независимых переменных равен произведению соответствующей частной производной на дифференциал этой производной.

На основании рассмотренного выше заключаем, что полный дифференциал функции равен сумме ее частных дифференциалов.

Если U=f(x, y, z….t), то частичные и полный дифференциалы определяются соответственно аналогично:

Пример: Найти полный дифференциал функции Z=y2 ln 2x

1) Находим частные производные функций;

2) Составляем частные дифференциалы;

3) Полный дифференциал найдем как суму частных дифференциалов







Дата добавления: 2014-12-06; просмотров: 2741. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия