Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Градиент





 

Пусть задана дифференцируемая функция Z=f(x, y). Геометрически она изображается поверхностью. Различные точки этой поверхности имеют различные аппликаты Z. Чтобы выделить на поверхности точки, находящиеся от плоскости на одном и том же расстоянии С, надо f(x, y)=С (геометрически провести секущую плоскость Z=C). Кривая в плоскости XOY, уравнение которой f(x, y)=С, называется линией уровня поверхности Z=f(x, y) т.е. линия уровня поверхности это множество всех точек плоскости, в которых данная функция принимает одно и то же значение.

Если поверхность Z=f(x, y) пересечь плоскостями Z=C, где С – произвольная постоянная, и спроектировать полученные в сечениях линии на плоскость xOy, то на этой плоскости получиться семейство линий уровня f(x, y)=С с параметром С.

Пример 1

Положим, что Z=C ;

 

Следовательно, линии уровня поверхности (эллипсоида) представляет собой семейство эллипсов с плоскостями a= 4 ; b=

Пусть Z=f(x, y) определена в некоторой окрестности точки Мо(xo, yo)

Определение. Градиентом функции Z=f(x, y) в точке Мо называется вектор, обозначаемый символом и имеющий координаты равные соответственно производным вычисленным в точке Мо

Градиент характеризует направление наискорейшего возрастания функции в заданной точке.

Если рассматривать функцию трех переменных, в точке Мо(xo, yo zo)

То

Пример 2 С какой наибольшей скоростью моет возрастать функция

при переходе точки М(x, y, z) через точку М(-1, 2, -1)? в каком направлении должна двигаться точка М при переходе черех точку М1(2; 0; 1), чтобы функция убывала с наибольшей скоростью?

 

Наибольшая по абсолютной величине скорость изменения (возрастания или убывания) функции и при переходе точки М через точку Р численно равна модулю градиента функции в точке Р.

1). его модуль, численно равный искомой наибольшей скорости вырастания функции и (М) при переходе через точку Мо будет = 3/5

2) Искомый вектор имеющий прямо противоположное направление будет Чтобы функция U убывала с наибольшей скоростью при переходе через точку М1 точка М должна двигаться в направлении вектора

Определение: Производной функции Z=f(x, y) в точке Мо(xo, yo) по направлению, определенному единичным вектором ē = cos α ī +cos β ĵ называется проекция на вектор ē

Соответственно, для функции U=f(x, y, z) производная в точке Мо(xo, yo, zo) по направлению вектора ē = cos α ī +cos β ĵ + cos p k имеет вид.

Пример3 Найти производную функцию u = xy+yz+1 по направлению вектора ē (12; -3; -4) в любой точке и в точках A(0; -2; -1) и B(3; 3; 5)

Найдем частные производные функций и U направляющие косинусы вектора ē

= x+z; ;

Подставляя значения в формулу для получим 8y-3(x+z)/13

Подставляя координаты точек А и В получим

Задачи для самостоятельного решения:

1. С какой наибольшей скоростью может убывать функция U=ln (x2 - y2+z2) при переходе точки М(x, y, z) через точку М(1; 1; 1)

2. Найти градиент функции z=x2-y3-y ln x точке А(1; 2)

3. Для функции найдите модуль градиента в точке U=xy-y2+ez найдите модуль градиента в точке А(2; 2; 0)

4. Найдите производную функцию U=0, 5 z2 yy-x2—y arcsin (x-2) по направлению вектора ā = (1, 2, 2) в точке A(2, 4, 1);

5. Постройте линии уровня функции Z=x2+6x+y2, найдите ее производную по направлениям вектора в точке K(-1; 1)

 

10. Кратные и криволинейные интегралы:







Дата добавления: 2014-12-06; просмотров: 3597. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия