Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Движение системы с конечным числом степеней свободы





Уравнения движения

Разрешающая система уравнений МКЭ – уравнения равновесия узлов.

 

Где – матрица жесткости системы,

– матрица жесткости элементов,

Z – вектор перемещений,

Р – вектор внешних сил.

Решив матричную систему уравнений и найдя Z, вычислим усилия Sk элементов

 

 

В задачах динамики добавляем по принципу Даламбера силы инерции и диссипативные силы

 

А) Матрица жесткости

, где

 

Для стандартных элементов на плоскости

 


Балочный элемент

Б) Матрица масс конечных элементов

Если заданы точечные массы, то М – диагональная матрица, по соответствующим степеням свободы – эти массы. Если масса распределена – ее можно располагать в узлах. Большее число узлов разбиения приводит к большей точности расчетов. Если погонная масса стержней m, то узловую массу можно собрать собрать так:


Ниже рассмотрен пример составления матрицы масс. В незаполненных клетках матрицы - нули.

В) Матрица демпфирования

Подробнее учет демпфирования опишем далее.

Свободные колебания

Для чего необходимо изучать свободные колебания?

А) Перед любым сейсмическим расчетом полезно сначала определить спектр частот и формы собственных колебаний, оценить расчетную схему, подобрать соответствующую акселерограмму землетрясений.

Б) Анализ собственных колебаний позволяет получить разрешающие уравнения движения метода модальной суперпозиции, или разложения по собственным формам колебаний.

Итак, при свободных колебаниях С = Р = 0.

Ищем решение системы, считая колебания гармоническими

,

Где ω i, φ 0i – частота и фаза колебаний. Подстановка решения в систему дает

(1)

Это система «n» линейных однородных уравнений относительно неизвестных векторов Vi, которые составляют матрицу V:

.

Нетривиальное решение будет, когда определитель

 

 

Раскрывая определитель, получаем алгебраическое уравнение n-й степени относительно ω 2, решение которого дает спектр ω 1, ω 2, … ω n.

Затем для каждой собственной частоты ω i из решения системы (n-1) уравнений (1) при, например, заданной величине V1i = 1определяем формы собственных колебаний

 

.

Условия ортогональности собственных форм

Рассмотрим i – ю форму колебаний

Тогда амплитудное значение вектора перемещений и вектора инерционных сил

. (2)

Для j –й формы соответственно (стрелки опускаем)

 

. (3)

Применив теорему Бетти, рассматривая эти состояния как взаимно возможные,

 

.

Заменяя в последнем выражении инерционные силы по (2) и (3), по правилу транспонирования произведения матриц получим

. (4)

Зная, что для симметричной матрицы , и что - скаляр, значит, выражение для него равно транспонированному, то

, поэтому запишем (4) в виде

.

Т.к. , следует .

Это Первое условие ортогональности собственных форм колебаний.

 

Если матрица М диагональная, то .

Запишем (1) в виде и умножим слева на , получим

т.к. , получим

Это Второе условие ортогональности собственных форм.

Физический смысл полученных условий собственных форм:

1) 1-е условие: Возможная работа внешних сил инерции i – й формы колебаний на перемещениях j – й формы равна нулю.

2) 2 – е условие: Возможная работа внутренних сил упругости i – й формы колебаний на перемещениях j – й формы равна нулю.

Если массы точечные и матрица М диагональна, то первое условие ортогональности можно записать в виде суммы

Этим равенством будем проверять расчет на собственные значения – определение частот и форм свободных колебаний конструкций.







Дата добавления: 2014-12-06; просмотров: 1481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия