Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение сейсмических нагрузок для систем со многими степенями свободы





Определение сейсмических нагрузок для систем со многими степенями свободы.

(Консольная схема СНиП)

Если - реакция к-й связи от единичного смещения i-й связи (метод перемещений), то уравнения равновесия для к-й массы

(1)

Здесь - силы сопротивления.

Систему уравнений (1) можно записать в матричной форме

. (2)

 

Здесь Диагональная матрица,

Матрица жесткости,

С – матрица демпфирования.

Метод модальной суперпозиции

Задача на собственные значения уже решена, т.е. вычислен спектр частот собственных колебаний и определены их формы. Ищем решение системы (2) в виде суперпозиций форм собственных колебаний

, (3)

где - обобщенная координата, соответствующая i-й форме собственных колебаний (функция времени).

Графически это можно представить в виде

 

 

1-я форма 2-я форма 3-я форма

 

Подставляя (3) в (2) и умножая слева на вектор получим при Φ = 0

 

(4)

 

Используя 1 и 2 условия ортогональности

и ,

Получим

, (5)

Где - обобщенная масса для i-й формы колебаний (число),

- обобщенная жесткость (число),

- обобщенная нагрузка.

Обобщенную жесткость можно представить

(6)

Это равенство следует из формулы (1) предыдущей лекции.

Подставляя (6) в (5) и деля на Мi получим

(7)

Повторяя процедуру (4-7) для других форм (j) получим другие (n-1) уравнений типа (7). Таким образом, применяя процедуру разложения по собственным формам, мы вместо системы уравнений (2) получили «n» независимых уравнений (7), т.е. система (2) распадается на «n» независимых уравнений, каждое из которых определяет обобщенную координату qi, отвечающую i – й форме колебаний. Следовательно, решение системы с «n» степенями свободы сводится к решению «n» задач линейного осциллятора.

 

Учет демпфирования

Отметим, что процедура разделения системы стала возможной потому, что матрица масс и матрица жесткости приводятся к диагональному виду с помощью одного преобразования. Поэтому, для того, чтобы матрица демпфирования также приводилась к диагональному виду, то, вслед за Рэлеем, можно представить ее в виде линейной комбинации этих матриц.

Тогда уравнения движения запишутся так:

После вышеприведенных преобразований получим

(7-а)

Где - коэффициент затухания.

Получим ni через коэффициент неупругого сопротивления γ:

Здесь период собственных колебаний по i – й форме,

δ – логарифмический декремент колебаний. Можно принять для стальных конструкций γ = 0, 01, для железобетонных конструкций γ = 0, 01.

Если матрица М диагональна, то

.

Перепишем правую часть уравнения (7-а):

(8)

Решение (7-а) через интеграл Дюамеля при нулевых начальных условиях

(9)

Относительное перемещение к-й массы

Полное перемещение к-й массы , после соответствующих замен

Ускорение к-й массы

Вычислим инерционную силу, действующую на к-ю массу при колебании по i-й форме

(10)

Формула (10) неудобна для пользования из за двойного дифференцирования, поэтому, полагая n«1 (γ «1) получим из (7-а):

(10-а)







Дата добавления: 2014-12-06; просмотров: 1394. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия