Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение сейсмических нагрузок для систем со многими степенями свободы





Определение сейсмических нагрузок для систем со многими степенями свободы.

(Консольная схема СНиП)

Если - реакция к-й связи от единичного смещения i-й связи (метод перемещений), то уравнения равновесия для к-й массы

(1)

Здесь - силы сопротивления.

Систему уравнений (1) можно записать в матричной форме

. (2)

 

Здесь Диагональная матрица,

Матрица жесткости,

С – матрица демпфирования.

Метод модальной суперпозиции

Задача на собственные значения уже решена, т.е. вычислен спектр частот собственных колебаний и определены их формы. Ищем решение системы (2) в виде суперпозиций форм собственных колебаний

, (3)

где - обобщенная координата, соответствующая i-й форме собственных колебаний (функция времени).

Графически это можно представить в виде

 

 

1-я форма 2-я форма 3-я форма

 

Подставляя (3) в (2) и умножая слева на вектор получим при Φ = 0

 

(4)

 

Используя 1 и 2 условия ортогональности

и ,

Получим

, (5)

Где - обобщенная масса для i-й формы колебаний (число),

- обобщенная жесткость (число),

- обобщенная нагрузка.

Обобщенную жесткость можно представить

(6)

Это равенство следует из формулы (1) предыдущей лекции.

Подставляя (6) в (5) и деля на Мi получим

(7)

Повторяя процедуру (4-7) для других форм (j) получим другие (n-1) уравнений типа (7). Таким образом, применяя процедуру разложения по собственным формам, мы вместо системы уравнений (2) получили «n» независимых уравнений (7), т.е. система (2) распадается на «n» независимых уравнений, каждое из которых определяет обобщенную координату qi, отвечающую i – й форме колебаний. Следовательно, решение системы с «n» степенями свободы сводится к решению «n» задач линейного осциллятора.

 

Учет демпфирования

Отметим, что процедура разделения системы стала возможной потому, что матрица масс и матрица жесткости приводятся к диагональному виду с помощью одного преобразования. Поэтому, для того, чтобы матрица демпфирования также приводилась к диагональному виду, то, вслед за Рэлеем, можно представить ее в виде линейной комбинации этих матриц.

Тогда уравнения движения запишутся так:

После вышеприведенных преобразований получим

(7-а)

Где - коэффициент затухания.

Получим ni через коэффициент неупругого сопротивления γ:

Здесь период собственных колебаний по i – й форме,

δ – логарифмический декремент колебаний. Можно принять для стальных конструкций γ = 0, 01, для железобетонных конструкций γ = 0, 01.

Если матрица М диагональна, то

.

Перепишем правую часть уравнения (7-а):

(8)

Решение (7-а) через интеграл Дюамеля при нулевых начальных условиях

(9)

Относительное перемещение к-й массы

Полное перемещение к-й массы , после соответствующих замен

Ускорение к-й массы

Вычислим инерционную силу, действующую на к-ю массу при колебании по i-й форме

(10)

Формула (10) неудобна для пользования из за двойного дифференцирования, поэтому, полагая n«1 (γ «1) получим из (7-а):

(10-а)







Дата добавления: 2014-12-06; просмотров: 1394. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия