Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства сравнимости





1. Два числа, сравнимые с третьим по одному модулю, сравни­мы между собой:

2. Сравнения можно складывать и вычитать:

(а º b(mod p); cº d(mod p)) => (а ± с) º (b ± d)(mod p).

Слагаемые можно переносить из одной части сравне­ния в другую с противоположным знаком.

3. Сравнения можно перемножать:

(a º b(mod p), с º d(mod p)) => (ас º bd(mod p)).

4. Обе части сравнения можно умножить на одно и то же целое число k:

(а º 6(mod p}) => (ak º bk(mod p)).

5. Обе части сравнения и модуль можно умножить на одно и то же число:

(а º b (mod p)) => (akº bk(mod pk)).

6. Обе части сравнения можно возвести в степень (следствие свойства 3):

(а º b (mod p)) => (аn = bn (mod p)).

Понятие сравнения ввел К.Ф.Гаусс в работе " Ариф­метические исследования" (1802). Алгебра вычетов возникает в тех случаях, когда рассматриваются некоторые циклически повторя­ющиеся события, например время в течение дня, повторяющееся каждые 24 часа, углы по окружности, повторяющиеся через пе­риод 2к, и т.д.

Алгебра вычетов - один из тех разделов математики, которые рождались как некоторые формальные рассуждения и только спустя годы нашли свое практи­ческое применение.

Пример. Для степени y=2n (n–натуральное число) установить классы сравнимости. Установить зависимость последней цифры этой степени от ее показателя.

Решение и комментарии.

Как известно, натуральные степени числа 2 оканчиваются циф­рами {2, 4, 8, 6}. См. таблицу нескольких степеней числа 2.

Опреде­лим функцию, которая ставит в соответствие каждому натуральному числу п последнюю цифру числа 2я:

n 2n Последняя цифра 2т
     
     
     
     
     
     
     
     

f: N®{2, 4, 8, 6},

Эта функция f(n) периодична с периодом 4. Это значит, что для целого числа k: f(n)=f(n+4)= f(n+4k),.

Причем справедливы так же равенства: f(n)=f(n-4)= f(n-4k)

Последнее равенство означают, что для любого п нужно найти минимальное натуральное т, такое, что f(m) = f(m + 4k) = f(n).

Но это задача на делении с остатком числа n на 4:

n=4k+m, k-частное, т - остаток.

Очевидно, последняя цифра числа 2" зависит от остатка, полученного при делении показателя n степени 2 n на 4.

Отразим этот факт в записи функции: f(n)= f(n mod 4)

Из этой формулы можно установить, если f(n mod 4)=0, то

При делении чисел на 4 " nÎ N, останки могут быть: 0, 1, 2, 3. Таким образом, в частности, множество всех возможных показателей степени 2 n для любого n состоит из четырех подмножеств: 4k, 4k+ 1, 4k+ 2, 4k+3.

Пример. Установить последнюю цифру степени y=2 2007

Решение. Имеем 2007=501·4+3, значит f (2007)=f (3)=23=8. Ответ

 







Дата добавления: 2014-10-22; просмотров: 798. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия