Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения. Пустым множеством называется множество Æ, не содержащее ни одного элемента, т.е





Множества и операции над ними

 

Пустым множеством называется множество Æ;, не содержащее ни одного элемента, т.е. для любого элемента x выполняется Æ;.

Универсальным называется множество U всех элементов, рассматриваемых в данной задаче.

Пример. Пусть U = Z и требуется найти все решения уравнения . Множество М решений этой задачи есть пустое множество: М = Æ.

Пусть теперь U = R. Тогда множество М решений уравнения не пусто: М = .

Будем говорить, что множество А включается во множество В , если каждый элемент множества А является элементом множества В (говорят также, что А является подмножеством множества В). Из определения включения следуют свойства:

1) для любого множества А;

2) Если и , то ;

3) Æ для любого множества А;

4) U для любого множества А.

Подмножество называется собственным подмножеством множества В ( - строгое включение), если А не пусто и не совпадает с В. Например, имеют место строгие включения: N Z Q R.

Определим понятие равенства множеств: А=В тогда и только тогда, когда одновременно выполняются два включения и , т.е. каждый элемент множества А является элементом множества В и каждый элемент множества В является элементом множества А:

Свойства равенства множеств:

1) для любого А справедливо А=A;

2) если А=В, то и В=A;

3) если А=В и В=C, то A=C.

 

1.1.4. Диаграммы Эйлера – Венна

 

Эти диаграммы применяются для наглядного изображения множеств и их взаимного расположения.

 
 


U

 

A B

 

 

Рис. 1.1 Диаграмма Эйлера-Венна

Универсальное множество U изображается в виде прямоугольника, а произвольные множества – подмножества универсального – в виде кругов (рис. 1.1).

При этом возможны следующие случаи взаимного расположения двух множеств А и В:

1) одно из множеств строго включается в другое ( или );

2) множества равны;

3) множества не имеют общих элементов;

4) множества находятся в общем положении, т.е. не подходит ни один из вышеперечисленных случаев, и множества расположены как на рис. 1.1.







Дата добавления: 2014-12-06; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия