Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоднородные уравнения





Частное решение линейного неоднородного разностного уравнения (3) определяется видом его правой части, т.е. функцией . После того как найдено общее решение однородного уравнения (5) и затем частное решение неоднородного уравнения (3) можно записать общее решение линейного неоднородного разностного уравнения с постоянными коэффициентами

, (19)

которое зависит от постоянных .

Для определения этих постоянных нужно воспользоваться начальными условиями , , …, . С учетом заданных начальных условий и решения уравнения (19) получим систему линейных уравнений (алгебраических) относительно постоянных . Найдя из этой системы уравнений значения этих постоянных, можно записать решение разностного уравнения, которое удовлетворяет заданным начальным значениям.

В зависимости от вида правой части разностного уравнения, т.е. функцией , возможны следующие случаи.

Случай 1. Правая часть дискретного разностного уравнения является полиномом независимой переменной степени .

. (13)

В этом случае частное решение линейного неоднородного уравнения (3) ищется в виде полинома той же степени .

, (14)

где коэффициенты ,, подлежат определению. Коэффициенты ,, определяются следующим образом:

< 1> равенство (14) подставляется в исходное уравнение (3);

< 2> в правой части полученного равенства выполняется группировка членов при одинаковых степенях ;

< 3> приравниваются коэффициенты при одинаковых степенях независимой переменной .

В результате получаем систему линейных алгебраических уравнений относительно искомых коэффициентов ,, . Решив ее относительно этих коэффициентов получим частное решение линейного неоднородного уравнения вида (14).

Случай 2. Правая часть дискретного разностного уравнения имеет вид

, (15)

где a - действительное число и не является корнем характеристического уравнения (6). В этом случае частное решение линейного неоднородного уравнения (3) ищется в виде

, (16)

где коэффициенты ,, подлежат определению.

Алгоритм вычисления неопределенных коэффициентов аналогичен алгоритму для случая 1.

Случай 3. Правая часть дискретного разностного уравнения имеет вид

, (17)

где a - действительное число; a является корнем характеристического уравнения (6), причем его кратность равна m.

Частное решение неоднородного уравнения (3) ищется в виде

, (18)

Алгоритм определения неопределенных коэффициентов ,, аналогичен алгоритму для случая 1.

Пример. Решить разностное уравнение

,

при начальных условиях , .

Решение. Характеристическое уравнение

,

,

,

, .

Частное решение неоднородного уравнения

,

коэффициент подлежит определению:

,

Подставив последние равенства в исходное разностное уравнение, получаем

,

,

, ,

.

Общее решение однородного уравнения

,

общее решение линейного неоднородного уравнения

,

, , ;

, ,

.

Получили систему линейных алгебраических уравнений относительно постоянных и

, ,

, , ,

, .

Ответ: .

 







Дата добавления: 2014-12-06; просмотров: 713. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия