Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоднородные уравнения





Частное решение линейного неоднородного разностного уравнения (3) определяется видом его правой части, т.е. функцией . После того как найдено общее решение однородного уравнения (5) и затем частное решение неоднородного уравнения (3) можно записать общее решение линейного неоднородного разностного уравнения с постоянными коэффициентами

, (19)

которое зависит от постоянных .

Для определения этих постоянных нужно воспользоваться начальными условиями , , …, . С учетом заданных начальных условий и решения уравнения (19) получим систему линейных уравнений (алгебраических) относительно постоянных . Найдя из этой системы уравнений значения этих постоянных, можно записать решение разностного уравнения, которое удовлетворяет заданным начальным значениям.

В зависимости от вида правой части разностного уравнения, т.е. функцией , возможны следующие случаи.

Случай 1. Правая часть дискретного разностного уравнения является полиномом независимой переменной степени .

. (13)

В этом случае частное решение линейного неоднородного уравнения (3) ищется в виде полинома той же степени .

, (14)

где коэффициенты ,, подлежат определению. Коэффициенты ,, определяются следующим образом:

< 1> равенство (14) подставляется в исходное уравнение (3);

< 2> в правой части полученного равенства выполняется группировка членов при одинаковых степенях ;

< 3> приравниваются коэффициенты при одинаковых степенях независимой переменной .

В результате получаем систему линейных алгебраических уравнений относительно искомых коэффициентов ,, . Решив ее относительно этих коэффициентов получим частное решение линейного неоднородного уравнения вида (14).

Случай 2. Правая часть дискретного разностного уравнения имеет вид

, (15)

где a - действительное число и не является корнем характеристического уравнения (6). В этом случае частное решение линейного неоднородного уравнения (3) ищется в виде

, (16)

где коэффициенты ,, подлежат определению.

Алгоритм вычисления неопределенных коэффициентов аналогичен алгоритму для случая 1.

Случай 3. Правая часть дискретного разностного уравнения имеет вид

, (17)

где a - действительное число; a является корнем характеристического уравнения (6), причем его кратность равна m.

Частное решение неоднородного уравнения (3) ищется в виде

, (18)

Алгоритм определения неопределенных коэффициентов ,, аналогичен алгоритму для случая 1.

Пример. Решить разностное уравнение

,

при начальных условиях , .

Решение. Характеристическое уравнение

,

,

,

, .

Частное решение неоднородного уравнения

,

коэффициент подлежит определению:

,

Подставив последние равенства в исходное разностное уравнение, получаем

,

,

, ,

.

Общее решение однородного уравнения

,

общее решение линейного неоднородного уравнения

,

, , ;

, ,

.

Получили систему линейных алгебраических уравнений относительно постоянных и

, ,

, , ,

, .

Ответ: .

 







Дата добавления: 2014-12-06; просмотров: 713. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия