Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоднородные уравнения





Частное решение линейного неоднородного разностного уравнения (3) определяется видом его правой части, т.е. функцией . После того как найдено общее решение однородного уравнения (5) и затем частное решение неоднородного уравнения (3) можно записать общее решение линейного неоднородного разностного уравнения с постоянными коэффициентами

, (19)

которое зависит от постоянных .

Для определения этих постоянных нужно воспользоваться начальными условиями , , …, . С учетом заданных начальных условий и решения уравнения (19) получим систему линейных уравнений (алгебраических) относительно постоянных . Найдя из этой системы уравнений значения этих постоянных, можно записать решение разностного уравнения, которое удовлетворяет заданным начальным значениям.

В зависимости от вида правой части разностного уравнения, т.е. функцией , возможны следующие случаи.

Случай 1. Правая часть дискретного разностного уравнения является полиномом независимой переменной степени .

. (13)

В этом случае частное решение линейного неоднородного уравнения (3) ищется в виде полинома той же степени .

, (14)

где коэффициенты ,, подлежат определению. Коэффициенты ,, определяются следующим образом:

< 1> равенство (14) подставляется в исходное уравнение (3);

< 2> в правой части полученного равенства выполняется группировка членов при одинаковых степенях ;

< 3> приравниваются коэффициенты при одинаковых степенях независимой переменной .

В результате получаем систему линейных алгебраических уравнений относительно искомых коэффициентов ,, . Решив ее относительно этих коэффициентов получим частное решение линейного неоднородного уравнения вида (14).

Случай 2. Правая часть дискретного разностного уравнения имеет вид

, (15)

где a - действительное число и не является корнем характеристического уравнения (6). В этом случае частное решение линейного неоднородного уравнения (3) ищется в виде

, (16)

где коэффициенты ,, подлежат определению.

Алгоритм вычисления неопределенных коэффициентов аналогичен алгоритму для случая 1.

Случай 3. Правая часть дискретного разностного уравнения имеет вид

, (17)

где a - действительное число; a является корнем характеристического уравнения (6), причем его кратность равна m.

Частное решение неоднородного уравнения (3) ищется в виде

, (18)

Алгоритм определения неопределенных коэффициентов ,, аналогичен алгоритму для случая 1.

Пример. Решить разностное уравнение

,

при начальных условиях , .

Решение. Характеристическое уравнение

,

,

,

, .

Частное решение неоднородного уравнения

,

коэффициент подлежит определению:

,

Подставив последние равенства в исходное разностное уравнение, получаем

,

,

, ,

.

Общее решение однородного уравнения

,

общее решение линейного неоднородного уравнения

,

, , ;

, ,

.

Получили систему линейных алгебраических уравнений относительно постоянных и

, ,

, , ,

, .

Ответ: .

 







Дата добавления: 2014-12-06; просмотров: 713. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия