Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕМА О КВАНТОВАНИИ





Если моменты квантования следуют достаточно часто, то при квантовании непрерывного сигнала потери информации незначительны, и наоборот. В качестве примера можно привести квантование синусоиды.

Квантование синусоиды осуществляется два раза за период. Поэтому синусоида неотличима от нулевого сигнала, если частота синусоидального сигнала равна половине частоты квантования.

Для квантования непрерывного сигнала необходимо знать, при каких условиях непрерывный (аналоговый) сигнал однозначно представляется соответствующими дискретными функциями (своими дискретами). Следующая теорема определяет условия квантования периодической функции.

ТЕОРЕМА ШЕНОНА.
Непрерывный сигнал, преобразование которого по Фурье равны нулю вне интервала , однозначно представляется своими значениями в равноотстоящих точках, если частота квантования больше . При этом непрерывный сигнал может быть получен из дискретного по интерполяционной формуле

, ( 1 )

где – период квантования; - угловая частота квантования, ее размерность [1/с] (радиан в секунду).

Доказательство. Пусть – непрерывный сигнал; - его преобразование по Фурье

, ( 2 )

( 3 )

Введем в рассмотрение функцию

, ( 4 )

разложение которой в ряд Фурье имеет вид

, ( 5 )

где .

Предположим теперь, что дискреты можно рассматривать как коэффициенты ряда Фурье для периодической функции . (Это проверяется непосредственными вычислениями). Тогда, используя определения коэффициентов Фурье и выражения ( 3 ) и ( 4 ), можно показать, что

. ( 6 )

Отсюда следует, что квантованный сигнал однозначно определяет функцию . По условию теоремы функция равна нулю вне интервала . Если , то

. (7)

Таким образом, преобразование Фурье непрерывного сигнала однозначно представляется функцией , которая в свою очередь определяется дискретной функцией

.

Для доказательства справедливости ( 1 ) заметим, что она может быть получена из ( 2 ) и ( 7 )

с учетом ( 5 ) и ( 6 ). Меняя порядок интегрирования и суммирования, имеем

.

Откуда получаем (1), т.к. .







Дата добавления: 2014-12-06; просмотров: 922. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия