Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРЕМА О КВАНТОВАНИИ





Если моменты квантования следуют достаточно часто, то при квантовании непрерывного сигнала потери информации незначительны, и наоборот. В качестве примера можно привести квантование синусоиды.

Квантование синусоиды осуществляется два раза за период. Поэтому синусоида неотличима от нулевого сигнала, если частота синусоидального сигнала равна половине частоты квантования.

Для квантования непрерывного сигнала необходимо знать, при каких условиях непрерывный (аналоговый) сигнал однозначно представляется соответствующими дискретными функциями (своими дискретами). Следующая теорема определяет условия квантования периодической функции.

ТЕОРЕМА ШЕНОНА.
Непрерывный сигнал, преобразование которого по Фурье равны нулю вне интервала , однозначно представляется своими значениями в равноотстоящих точках, если частота квантования больше . При этом непрерывный сигнал может быть получен из дискретного по интерполяционной формуле

, ( 1 )

где – период квантования; - угловая частота квантования, ее размерность [1/с] (радиан в секунду).

Доказательство. Пусть – непрерывный сигнал; - его преобразование по Фурье

, ( 2 )

( 3 )

Введем в рассмотрение функцию

, ( 4 )

разложение которой в ряд Фурье имеет вид

, ( 5 )

где .

Предположим теперь, что дискреты можно рассматривать как коэффициенты ряда Фурье для периодической функции . (Это проверяется непосредственными вычислениями). Тогда, используя определения коэффициентов Фурье и выражения ( 3 ) и ( 4 ), можно показать, что

. ( 6 )

Отсюда следует, что квантованный сигнал однозначно определяет функцию . По условию теоремы функция равна нулю вне интервала . Если , то

. (7)

Таким образом, преобразование Фурье непрерывного сигнала однозначно представляется функцией , которая в свою очередь определяется дискретной функцией

.

Для доказательства справедливости ( 1 ) заметим, что она может быть получена из ( 2 ) и ( 7 )

с учетом ( 5 ) и ( 6 ). Меняя порядок интегрирования и суммирования, имеем

.

Откуда получаем (1), т.к. .







Дата добавления: 2014-12-06; просмотров: 922. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия