Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретное преобразование Фурье. Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления





Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления, на дискретные системы.

Пусть абсцисса абсолютной сходимости дискретного преобразования Лапласа (1) функции отрицательна . Тогда изображение существует и является аналитической функцией в правой полуплоскости и на мнимой оси. Пологая в формуле (1) , получим

. (34)

Эта формула прямого преобразования дискретного Фурье.

Обратное дискретное преобразование Фурье определяется по формуле

. (35)

Эта формула получается из формулы обратного дискретного преобразования Лапласа при .

Функцию в этом случае можно назвать спектральной характеристической дискретной функцией .

Связь между непрерывным преобразованием Фурье для непрерывной функции и соответствующей ей дискретной функции , имеющей дискретное преобразование Фурье определяется формулой

(36)

.

В частности при формула (36) принимает вид

. (37)

Выражение (36) связывает преобразование Фурье функции и дискретное преобразование Фурье соответствующей дискретной функцией . Формулу (36) можно переписать следующим образом

, (38)

где .

Из формул (36) и (38) следует теорема Котельникова, которая устанавливает связь между непрерывными и дискретными функциями.

 







Дата добавления: 2014-12-06; просмотров: 690. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия