Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретное преобразование Фурье. Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления





Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления, на дискретные системы.

Пусть абсцисса абсолютной сходимости дискретного преобразования Лапласа (1) функции отрицательна . Тогда изображение существует и является аналитической функцией в правой полуплоскости и на мнимой оси. Пологая в формуле (1) , получим

. (34)

Эта формула прямого преобразования дискретного Фурье.

Обратное дискретное преобразование Фурье определяется по формуле

. (35)

Эта формула получается из формулы обратного дискретного преобразования Лапласа при .

Функцию в этом случае можно назвать спектральной характеристической дискретной функцией .

Связь между непрерывным преобразованием Фурье для непрерывной функции и соответствующей ей дискретной функции , имеющей дискретное преобразование Фурье определяется формулой

(36)

.

В частности при формула (36) принимает вид

. (37)

Выражение (36) связывает преобразование Фурье функции и дискретное преобразование Фурье соответствующей дискретной функцией . Формулу (36) можно переписать следующим образом

, (38)

где .

Из формул (36) и (38) следует теорема Котельникова, которая устанавливает связь между непрерывными и дискретными функциями.

 







Дата добавления: 2014-12-06; просмотров: 690. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия