Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретное преобразование Фурье. Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления





Это преобразование позволяет распространить частотные методы исследования, разработанные для непрерывных систем автоматического управления, на дискретные системы.

Пусть абсцисса абсолютной сходимости дискретного преобразования Лапласа (1) функции отрицательна . Тогда изображение существует и является аналитической функцией в правой полуплоскости и на мнимой оси. Пологая в формуле (1) , получим

. (34)

Эта формула прямого преобразования дискретного Фурье.

Обратное дискретное преобразование Фурье определяется по формуле

. (35)

Эта формула получается из формулы обратного дискретного преобразования Лапласа при .

Функцию в этом случае можно назвать спектральной характеристической дискретной функцией .

Связь между непрерывным преобразованием Фурье для непрерывной функции и соответствующей ей дискретной функции , имеющей дискретное преобразование Фурье определяется формулой

(36)

.

В частности при формула (36) принимает вид

. (37)

Выражение (36) связывает преобразование Фурье функции и дискретное преобразование Фурье соответствующей дискретной функцией . Формулу (36) можно переписать следующим образом

, (38)

где .

Из формул (36) и (38) следует теорема Котельникова, которая устанавливает связь между непрерывными и дискретными функциями.

 







Дата добавления: 2014-12-06; просмотров: 690. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия