Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СУММИРОВАНИЕ ДИСКРЕТНЫХ ФУНКЦИЙ





 

Пусть дискретная функция определена при положительных значениях аргумента . Требуется найти такую дискретную функцию , для которой функция является первой разностью. Эта задача аналогична задаче о нахождении первообразной в анализе непрерывных функций. Искомая функция имеет вид

, где

Действительно

.

Функция называется первообразной для дискретной функции .

Если дискретная функция определена при всех целочисленных значениях аргумента k=0, ±1, ±2, …, то для определения первообразной необходимо дополнительно потребовать, чтобы при каждом конечном сходился ряд . При этом условии первообразная определяется выражением

.

Если функция является первообразной для функции , то и функция также является первообразной для дискретной функции , где – постоянная величина. Действительно

.

Таким образом, общий вид первообразной для данной дискретной функции определяется формулой

.

Значение постоянной можно выразить через значение первообразной при некотором фиксированном значении аргумента, например при

.

Подставляя полученное выражение в формулу (19), найдем

.

Откуда

(20)

для любого .

Формула (20) является аналогом соответствующей формулы интегрального исчисления, связывающей интеграл с первообразной, ее можно записать в виде

, для . (21)

Сумму, стоящую в правой части этого выражения, иногда называют определенной суммой по аналогии с определенным интегралом. Учитывая условие , можно переписать равенство (21) следующим образом

(22)

или при

. (23)

Для дискретных функций справедлива формула суммирования по частям, аналогичная формуле интегрирования по частям для обычных функций. Если в формуле (23) положить

, .

то

.







Дата добавления: 2014-12-06; просмотров: 966. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия