Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейные разностные уравнения с постоянными коэффициентами





 

Линейным разностным уравнением называется соотношение вида

, (1)

где , …, – постоянные числа; – заданная дискретная функция. Разностное уравнение устанавливает связь между дискретной функцией и ее разностями. С помощью формулы

(2)

уравнение (1) можно преобразовать к виду

. (3)

При этом коэффициенты связаны с коэффициентами соотношением

. (4)

Число в уравнении (3) называется периодом разностного уравнения. Число в равенстве (1) и (3) могут не совпадать, но порядок разностного уравнения (1) определяется после его преобразования к уравнению вида (3). Таким образом, порядок разностного уравнения (1) может отличаться от порядка старшей разности.

Дискретная функция , которая обращает разностное уравнение в тождество, называется решением разностного уравнения. Далее мы будем рассматривать разностные уравнения, записанные в виде (3).

Разностное уравнение вида (3) называется неоднородным разностным уравнением порядка . Если , то уравнение (3) принимает вид

(5)

и называется однородным разностным уравнением.

Пример. Определить порядок разностного уравнения

Решение. Отметим, что исходное уравнение – однородное.

,

.

Подставим это равенство в исходное уравнение

,

.

Замена переменной дает

.

Следовательно, порядок исходного разностного уравнения равен единице.







Дата добавления: 2014-12-06; просмотров: 785. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия