Линеаризация нелинейных уравнений методом последовательных приближений
Общий метод решения этой задачи основан на допущении, что несовместность условных уравнений невелика, т.е. их невязки малы. Тогда, взяв из условной системы столько уравнений, сколько в ней неизвестных, их решением находим начальные оценки неизвестных . Полагая далее, что подставляя эти выражения в условные уравнения, раскладываем условные уравнения в ряды. Сохраняя лишь члены с первыми степенями поправок получим
Переписав полученное выражение в виде
,
можно видеть, что мы получили условную систему линейных уравнений относительно поправок . Решение этой системы с помощью МНК
дает нам их оценки и СКО. Тогда Поскольку - неслучайные величины, то S2( ) = S2 (). Получив оценки можно сделать второе приближение и т.д.
Рисунок 6.1 - Графики аппроксимирующих функций
уравнения, раскладываем условные уравнения в ряды. Сохраняя лишь члены с первыми степенями поправок получим
Переписав полученное выражение в виде
,
можно видеть, что мы получили условную систему линейных уравнений относительно поправок . Решение этой системы с помощью МНК
дает нам их оценки и СКО. Тогда Поскольку - неслучайные величины, то S2( ) = S2 (). Получив оценки можно сделать второе приближение и т.д.
6.2 Пример выполнения контрольного задания
6.2.1 Задание
Определите вид и параметры функциональной зависимости Y=f(x, a0 a1), аппроксимирующей экспериментальную зависимость, приведенную в табл. 6.1. С доверительной вероятностью Р = 0, 95 найдите границы погрешности и определения параметров a0 и А1 функции.
6.2.2 Выполнение задания
1. Строим экспериментальную зависимость (рис. 6.2) и по ее виду, пользуясь рис. 6.1, задаем предполагаемый функциональный вид зависимости
Рисунок 6.2 - Экспериментальная зависимость
2. Поскольку эта зависимость нелинейная, необходимо привести ее клинейной. Для этого воспользуемся приемом линеаризации (см. п.п. 6.1.3). Вводя замену переменной , получаем .
Значения х* приведены в табл. 6.1.
Строим график полученной зависимости Y = /(**) (рис. 6.3) и убеждаемся в его линейности, т.е. вид функциональной зависимости задан правильно.
3. Определим параметры a0 и А1 зависимости (6.16) методом наименьших квадратов. Для этого находим значения сумм Гаусса: .
Нормальная система уравнений имеет вид
416, 2 = 20 +42, 3
982, 9 = 42, З + 102, 16
Таблица 6.1.
Экспериментальные и линеаризованные зависимости
x
| Y
| x*
| d
| Yопр
|
| 3.62
|
| 4.18*10-5
| 3.6200
|
| 9.25
| 0.6931
| -1.4018*10-3
| 9.2489
|
| 12.54
| 1.0986
| 1.6*10-3
| 12.5417
|
| 14.88
| 1.3863
| -2.033*10-3
| 14.8779
|
| 16.69
| 1.6094
| -2.73*10-4
| 16.6900
|
| 18.17
| 1.7918
| 9.69*10-4
| 18.1706
|
| 19.42
| 1.9459
| 2.391*10-3
| 19.4225
|
| 20.51
| 2.0794
| -3.477*10-3
| 20.5068
|
| 21.46
| 2.1972
| 3.159*10-3
| 21.4634
|
| 22.32
| 2.3026
| -9.04*10-4
| 22.3189
|
| 23.09
| 2.3979
| 3.012*10-3
| 23.2929
|
| 23.80
| 2.4849
| -4.75*10-4
| 23.7996
|
| 24.45
| 2.5649
| -8.07*10-4
| 24.4498
|
| 25.05
| 2.6391
| 1.759*10-3
| 25.0514
|
| 25.61
| 2.7080
| 1.285*10-3
| 25.6117
|
| 26.14
| 2.7726
| -4.108*10-3
| 26.1358
|
| 26.63
| 2.8332
| -1.173*10-2
| 26.6281
|
| 27.09
| 2.8904
| 2.527*10-3
| 27.0983
|
| 27.53
| 2.9444
| 1.053*10-3
| 27.5314
|
| 27.95
| 2.9957
| -2.348*10-3
| 27.5479
|
Рисунок 6.3 - Линеаризованная зависимость
По формулам (6. 17)-(6.19), находим =3, 6200418; =8, 1208432.
Подставляя оценки , в условную систему уравнений, получаем значения невязок , по формуле
Значения рассчитанных невязок приведены в табл. 6. 1.
4. Для определения оценок среднеквадратического отклонения , воспользуемся выражениями (6.20)-(6.21)
;
;
.
Для определения границ погрешностей нахождения , воспользуемся выражением (6.22), для чего по табл. Б.5 для числа степеней свободы п -т -1=18, находим для заданной вероятности Р д=0, 95
В этом случае , .
6.3 Варианты контрольных заданий
Таблица 6.2
Варианты 1, 8, 15, 22, 29, 36, 43 ()
x
| 1)P=0.9
| 8)P=0.95
| 15)P=0.99
| 22)P=0.9
| 29)P=0.95
| 36)P=0.99
| 43)P=0.9
|
| 10.4
| 15.7
| 32.0
| 38.8
| 14.8
| 4.02
| 4.13
|
| 11.7
| 21.9
| 46.7
| 58.3
| 23.7
| 6.89
| 4.76
|
| 12.9
| 28.0
| 61.4
| 77.8
| 32.7
| 9.76
| 5.41
|
| 14.2
| 34.1
| 76.2
| 97.3
| 41.6
| 12.62
| 6.06
|
| 15.4
| 40.2
| 90.9
| 116.8
| 50.6
| 15.49
| 6.71
|
| 16.7
| 41.3
| 105.7
| 136.2
| 59.5
| 18.35
| 7.33
|
| 17.9
| 52.5
| 120.4
| 155.7
| 68.5
| 21.22
| 7.97
|
| 19.2
| 58.6
| 135.1
| 175.2
| 77.4
| 24.09
| 8.62
|
| 20.4
| 64.7
| 149.9
| 194.7
| 86.4
| 26.95
| 9.26
|
| 21.7
| 70.8
| 164.6
| 214.2
| 95.4
| 29.82
| 9.91
|
| 22.9
| 77.0
| 179.4
| 233.7
| 104.3
| 32.69
| 10.54
|
| 24.9
| 83.1
| 194.1
| 253.1
| 113.3
| 35.56
| 11.17
|
| 25.4
| 89.2
| 208.8
| 272.6
| 122.2
| 38.43
| 11.82
|
| 26.7
| 95.3
| 223.6
| 292.1
| 132.2
| 41.31
| 12.46
|
| 27.9
| 101.5
| 238.3
| 311.6
| 140.2
| 44.16
| 13.1
|
| 29.1
| 107.6
| 253.1
| 331.1
| 149.1
| 47.02
| 13.73
|
| 30.4
| 113.7
| 267.8
| 350.6
| 158.1
| 49.89
| 14.40
|
| 31.6
| 119.8
| 282.5
| 370.0
| 167.0
| 52.76
| 15.04
|
| 32.9
| 125.9
| 297.3
| 389.5
| 176.0
| 55.63
| 15.67
|
| 34.1
| 132.1
| 312.0
| 409.0
| 184.9
| 58.49
| 16.31
| Таблица 6.3
Варианты 2, 9, 16, 23, 30, 37, 44 ()
x
| 2)P=0.9
| 9)P=0.95
| 16)P=0.99
| 23)P=0.9
| 30)P=0.95
| 37)P=0.99
| 44)P=0.9
|
| 0, 538
| 0, 38
| 1, 53
| 2, 00
| 3, 20
| 1, 91
| 37, 22
|
| 0, 547
| 0, 91
| 1, 80
| 2, 04
| 7, 37
| 2, 25
| 27, 87
|
| 0, 552
| 1, 51
| 1, 98
| 2, 07
| 12, 0
| 2, 65
| 20, 86
|
| 0, 556
| 2, 15
| 2, 12
| 2, 09
| 16, 95
| 3, 12
| 15, 62
|
| 0, 558
| 2, 84
| 2, 23
| 2, 11
| 22, 17
| 3, 67
| 11, 69
|
| 0, 561
| 3, 55
| 2, 33
| 2, 12
| 27, 60
| 4, 32
| 8, 75
|
| 0, 563
| 4, 30
| 2, 42
| 2, 13
| 33, 23
| 5, 08
| 6, 65
|
| 0, 564
| 5, 07
| 2, 50
| 2, 14
| 39, 01
| 5, 98
| 4, 91
|
| 0, 566
| 5, 87
| 2, 57
| 2, 15
| 44, 98
| 7, 04
| 3, 67
|
| 0, 567
| 6, 08
| 2, 63
| 2, 15
| 51, 01
| 8, 27
| 2, 75
|
| 0, 569
| 7, 62
| 2, 69
| 2, 16
| 57, 21
| 9, 73
| 2, 06
|
| 0, 570
| 8, 32
| 2, 75
| 2, 17
| 63, 51
| 11, 45
| 1, 55
|
| 0, 571
| 9, 24
| 2, 80
| 2, 17
| 69, 93
| 13, 47
| 1, 15
|
| 0, 572
| 10, 13
| 2, 85
| 2, 18
| 76, 45
| 15, 85
| 0, 86
|
| 0, 573
| 11, 03
| 2, 90
| 2, 18
| 83, 06
| 18, 64
| 0, 65
|
| 0, 574
| 11, 94
| 2, 94
| 2, 19
| 89, 76
| 21, 93
| 0, 48
|
| 0, 574
| 12, 87
| 2, 98
| 2, 19
| 96, 54
| 25, 80
| 0, 36
|
| 0, 575
| 13, 81
| 3, 03
| 2, 19
| 103, 41
| 30, 35
| 0, 26
|
| 0, 576
| 14, 77
| 3, 06
| 2, 20
| 110, 35
| 35, 70
| 0, 2
|
| 0, 577
| 15, 73
| 3, 10
| 2, 20
| 117, 37
| 42, 00
| 0, 15
| Таблица 6.4
Варианты 3, 10, 17, 24, 31, 38, 45 ()
x
| 3)P=0.9
| 10)P=0.95
| 17)P=0.99
| 24)P=0.9
| 31)P=0.95
| 38)P=0.99
| 45)P=0.9
|
| 8, 45
| 6, 25
| 2, 71
| 2, 10
| 1, 54
| 0, 47
| 6, 11
|
| 9, 10
| 6, 79
| 2, 99
| 2, 33
| 1, 72
| 1, 67
| 9, 59
|
| 9, 81
| 7, 37
| 3, 29
| 3, 58
| 1, 93
| 3, 51
| 12, 48
|
| 10, 57
| 8, 00
| 3, 63
| 2, 86
| 2, 16
| 6, 02
| 15, 05
|
| 11, 39
| 8, 69
| 4, 00
| 3, 17
| 2, 42
| 9, 05
| 17, 39
|
| 12, 28
| 9, 44
| 4, 41
| 3, 51
| 2, 71
| 12, 72
| 19, 58
|
| 13, 23
| 10, 24
| 4, 86
| 3, 89
| 3, 03
| 16, 92
| 21, 64
|
| 14, 26
| 11, 12
| 5, 35
| 4, 31
| 3, 39
| 21, 65
| 23, 60
|
| 15, 37
| 12, 08
| 5, 90
| 4, 78
| 3, 80
| 26, 87
| 25, 48
|
| 16, 56
| 13, 11
| 6, 50
| 5, 30
| 4, 25
| 32, 66
| 27, 28
|
| 17, 85
| 14, 24
| 7, 17
| 5, 78
| 4, 76
| 38, 97
| 29, 03
|
| 19, 24
| 15, 46
| 7, 90
| 6, 51
| 5, 32
| 45, 73
| 30, 71
|
| 20, 73
| 16, 78
| 8, 70
| 7, 21
| 5, 96
| 53, 05
| 32, 35
|
| 22, 35
| 18, 22
| 9, 59
| 7, 99
| 6, 67
| 60, 83
| 33, 95
|
| 24, 08
| 19, 78
| 10, 57
| 8, 86
| 7, 49
| 69, 09
| 35, 50
|
| 25, 95
| 21, 48
| 11, 65
| 9, 82
| 8, 36
| 77, 84
| 37, 02
|
| 27, 97
| 23, 32
| 12, 84
| 10, 88
| 9, 36
| 87, 07
| 38, 51
|
| 30, 14
| 25, 32
| 14, 16
| 12, 06
| 10, 48
| 96, 76
| 39, 97
|
| 32, 49
| 27, 49
| 15, 60
| 13, 37
| 11, 73
| 106, 93
| 41, 40
|
| 35, 01
| 29, 84
| 17, 20
| 14, 82
| 13, 13
| 117, 56
| 42, 80
| Таблица 6.5
Варианты 4, 11, 18, 25, 32, 39, 46 ()
x
| 4)P=0.9
| 11)P=0.95
| 18)P=0.99
| 25)P=0.9
| 32)P=0.95
| 39)P=0.99
| 46)P=0.9
|
| 10, 72
| 21, 90
| 18, 64
| 13, 03
| 10, 36
| 1, 63
| 15, 98
|
| 8, 95
| 13, 69
| 13, 24
| 10, 62
| 9, 06
| 1, 71
| 13, 15
|
| 7, 68
| 9, 96
| 10, 27
| 8, 96
| 8, 05
| 1, 79
| 11, 18
|
| 6, 72
| 7, 82
| 8, 39
| 7, 74
| 7, 24
| 1, 88
| 9, 72
|
| 5, 98
| 6, 44
| 7, 09
| 6, 82
| 6, 58
| 1, 98
| 8, 59
|
| 5, 39
| 5, 48
| 6, 14
| 6, 10
| 6, 03
| 2, 09
| 7, 01
|
| 4, 90
| 4, 76
| 5, 41
| 5, 51
| 5, 57
| 2, 22
| 6, 98
|
| 4, 49
| 4, 21
| 4, 84
| 5, 03
| 5, 17
| 2, 36
| 6, 38
|
| 4, 15
| 3, 78
| 4, 38
| 4, 62
| 4, 83
| 2, 52
| 5, 88
|
| 3, 85
| 3, 42
| 4, 00
| 4, 28
| 4, 52
| 2, 71
| 5, 45
|
| 3, 60
| 3, 13
| 3, 68
| 3, 98
| 4, 26
| 2, 92
| 5, 08
|
| 3, 37
| 2, 88
| 3, 40
| 3, 72
| 4, 02
| 3, 17
| 4, 75
|
| 3, 17
| 2, 67
| 3, 17
| 3, 49
| 3, 81
| 3, 46
| 4, 47
|
| 3, 00
| 2, 49
| 2, 96
| 3, 29
| 3, 62
| 3, 82
| 4, 22
|
| 2, 84
| 2, 33
| 2, 78
| 3, 11
| 3, 45
| 4, 27
| 3, 99
|
| 2, 70
| 2, 19
| 2, 62
| 2, 95
| 3, 29
| 4, 82
| 3, 79
|
| 2, 57
| 2, 07
| 2, 48
| 2, 81
| 3, 15
| 5, 54
| 3, 60
|
| 2, 45
| 1, 96
| 2, 35
| 2, 68
| 3, 02
| 6, 52
| 3, 44
|
| 2, 35
| 1, 86
| 2, 24
| 2, 56
| 2, 89
| 7, 91
| 3, 29
|
| 2, 25
| 1, 77
| 2, 13
| 2, 45
| 2, 78
| 10, 05
| 3, 15
|
Таблица 6.6
Варианты 5, 12, 19, 26, 33, 40, 47 ()
x
| 5)P=0.9
| 12)P=0.95
| 19)P=0.99
| 26)P=0.9
| 33)P=0.95
| 40)P=0.99
| 47)P=0.9
|
| 0, 229
| 0, 0818
| 0, 0381
| 1, 1104
| 133, 1
| 2, 59
| 0, 17
|
| 0, 284
| 0, 09558
| 0, 0480
| 1, 1464
| 174, 1
| 4, 88
| 0, 35
|
| 0, 304
| 0, 1015
| 0, 0526
| 1, 1589
| 194, 1
| 6, 91
| 0, 56
|
| 0, 322
| 0, 1047
| 0, 0552
| 1, 1653
| 205, 7
| 8, 74
| 0, 78
|
| 0, 331
| 0, 1066
| 0, 0569
| 1, 1692
| 213, 7
| 10, 37
| 1, 04
|
| 0, 338
| 0, 1080
| 0, 0581
| 1, 1717
| 219, 2
| 11, 85
| 1, 33
|
| 0, 342
| 0, 1090
| 0, 0590
| 1, 1736
| 223, 3
| 13, 20
| 1, 65
|
| 0, 346
| 0, 1098
| 0, 0597
| 1, 1750
| 226, 5
| 14, 43
| 2, 03
|
| 0, 349
| 0, 1104
| 0, 0602
| 1, 1761
| 229, 1
| 15, 56
| 2, 46
|
| 0, 351
| 0, 1108
| 0, 0610
| 1, 1769
| 231, 2
| 16, 59
| 2, 97
|
| 0, 353
| 0, 1112
| 0, 0613
| 1, 1777
| 232, 9
| 17, 55
| 3, 57
|
| 0, 355
| 0, 1116
| 0, 0616
| 1, 1782
| 234, 4
| 18, 43
| 4, 29
|
| 0, 356
| 0, 1119
| 0, 0618
| 1, 1787
| 235, 6
| 19, 26
| 5, 18
|
| 0, 357
| 0, 1121
| 0, 0620
| 1, 1792
| 236, 7
| 20, 02
| 6, 29
|
| 0, 358
| 0, 1123
| 0, 0622
| 1, 1796
| 237, 6
| 20, 73
| 7, 75
|
| 0, 359
| 0, 1125
| 0, 0624
| 1, 1799
| 238, 5
| 21, 40
| 9, 69
|
| 0, 360
| 0, 1127
| 0, 0625
| 1, 1802
| 239, 2
| 22, 03
| 12, 47
|
| 0, 361
| 0, 1128
| 0, 0626
| 1, 1804
| 239, 9
| 22, 62
| 16, 71
|
| 0, 361
| 0, 1130
| 0, 0627
| 1, 1807
| 240, 9
| 23, 99
| 24, 04
|
| 0, 362
| 0, 1131
| 0, 0628
| 1, 1809
| 241, 1
| 23, 69
| 39, 69
| Таблица 6.7
Варианты 6, 13, 20, 27, 34, 41, 48 ()
x
| 6)P=0.9
| 13)P=0.95
| 20)P=0.99
| 27)P=0.9
| 34)P=0.95
| 41)P=0.99
| 48)P=0.9
|
| 19, 35
| 1, 550
| 10, 383
| 1, 452
| 15, 155
| 3, 49
| 5, 14
|
| 32, 68
| 2, 760
| 18, 324
| 14, 785
| 15, 850
| 14, 22
| 13, 36
|
| 40, 48
| 3, 469
| 22, 969
| 22, 585
| 16, 257
| 20, 49
| 18, 17
|
| 46, 02
| 3, 972
| 26, 265
| 28, 118
| 16, 546
| 24, 95
| 21, 58
|
| 50, 31
| 4, 362
| 28, 821
| 32, 411
| 16, 769
| 28, 41
| 24, 23
|
| 53, 82
| 4, 681
| 30, 910
| 35, 917
| 17, 952
| 31, 23
| 26, 39
|
| 56, 78
| 4, 951
| 32, 676
| 38, 883
| 17, 107
| 33, 61
| 28, 22
|
| 59, 35
| 5, 184
| 34, 205
| 41, 451
| 17, 241
| 35, 68
| 29, 80
|
| 61, 62
| 5, 339
| 35, 555
| 43, 717
| 17, 359
| 37, 51
| 31, 20
|
| 63, 64
| 5, 574
| 36, 762
| 45, 744
| 17, 465
| 39, 14
| 32, 45
|
| 65, 68
| 5, 741
| 37, 854
| 47, 577
| 17, 561
| 40, 61
| 33, 58
|
| 67, 15
| 5, 893
| 38, 851
| 49, 251
| 17, 641
| 41, 96
| 34, 61
|
| 68, 69
| 6, 034
| 39, 768
| 50, 779
| 17, 728
| 43, 19
| 35, 56
|
| 70, 12
| 6, 163
| 40, 617
| 52, 216
| 17, 803
| 44, 35
| 36, 44
|
| 71, 45
| 6, 283
| 41, 407
| 53, 541
| 17, 872
| 45, 41
| 37, 26
|
| 72, 68
| 6, 396
| 42, 164
| 54, 786
| 17, 937
| 46, 41
| 38, 03
|
| 73, 85
| 6, 502
| 42, 841
| 55, 951
| 17, 997
| 47, 35
| 38, 75
|
| 74, 95
| 6, 603
| 43, 496
| 57, 050
| 18, 055
| 48, 23
| 39, 42
|
| 76, 99
| 6, 697
| 44, 115
| 58, 090
| 18, 109
| 49, 07
| 40, 06
|
| 76, 98
| 6, 786
| 44, 703
| 59, 076
| 18, 160
| 49, 87
| 40, 67
| Таблица 6.8
Варианты 7, 14, 21, 28, 35, 42, 49 ()
x
| 7)P=0.9
| 14)P=0.95
| 21)P=0.99
| 28)P=0.9
| 35)P=0.95
| 42)P=0.99
| 49)P=0.9
|
| 21, 68
| 29, 03
| 29, 88
| 22, 63
| 43, 22
| 21, 71
| 27, 89
|
| 12, 71
| 11, 56
| 16, 37
| 14, 73
| 16, 74
| 12, 61
| 16, 34
|
| 9, 72
| 5, 74
| 11, 86
| 12, 10
| 7, 91
| 9, 58
| 12, 49
|
| 8, 23
| 2, 83
| 9, 61
| 10, 78
| 3, 50
| 8, 07
| 10, 57
|
| 7, 33
| 1, 08
| 8, 26
| 9, 98
| 0, 85
| 7, 16
| 9, 41
|
| 6, 73
| -0, 09
| 7, 36
| 9, 46
| -0, 92
| 6, 55
| 8, 64
|
| 6, 30
| -0, 92
| 6, 72
| 9, 09
| -2, 18
| 6, 12
| 8, 09
|
| 5, 98
| -1, 54
| 6, 23
| 8, 80
| -3, 12
| 5, 79
| 7, 68
|
| 5, 73
| -2, 03
| 5, 86
| 8, 58
| -3, 86
| 5, 54
| 7, 36
|
| 5, 53
| -2, 41
| 5, 56
| 8, 41
| -4, 45
| 5, 34
| 7, 10
|
| 5, 37
| -2, 73
| 5, 31
| 8, 26
| -4, 93
| 5, 17
| 6, 89
|
| 5, 24
| -3, 00
| 5, 11
| 8, 14
| -5, 33
| 5, 03
| 6, 72
|
| 5, 12
| -3, 22
| 4, 94
| 8, 04
| -5, 67
| 4, 92
| 6, 57
|
| 5, 02
| -3, 41
| 4, 79
| 7, 96
| -5, 96
| 4, 82
| 6, 44
|
| 4, 94
| -3, 58
| 4, 66
| 7, 88
| -6, 21
| 4, 73
| 6, 33
|
| 4, 86
| -3, 72
| 4, 55
| 7, 82
| -6, 43
| 4, 65
| 6, 23
|
| 4, 80
| -3, 85
| 4, 45
| 7, 76
| -6, 63
| 4, 58
| 6, 15
|
| 4, 74
| -3, 97
| 4, 36
| 7, 71
| -6, 80
| 4, 53
| 6, 07
|
| 4, 68
| -4, 07
| 4, 28
| 7, 66
| -6, 96
| 4, 48
| 6, 01
|
| 4, 64
| -4, 16
| 4, 21
| 7, 62
| -7, 09
| 4, 43
| 5, 94
|
Приложение А - Законы распределения случайных величин
Равновероятное распределение (рис. А1, а).
Плотность распределения
Интегральная функция распределения
Параметры А - 0; E - -1, 2; tp=
Треугольное распределение (Симпсона) (рис. А1, б).
Плотность распределения
Интегральная функция распределения
Параметры A = 0; Е = -0, 6;
Нормальный закон (Гаусса) (рис. А1, в).
Плотность распределения
Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...
|
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при которых тело находится под действием заданной системы сил...
|
Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...
|
Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...
|
Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...
КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...
Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...
|
Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...
ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, новогаленовые препараты, жидкие органопрепараты и жидкие экстракты, а также порошки и таблетки для имплантации...
Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...
|
|