Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральная функция распределения





Параметры A = 0; E = 0;

Двойное экспоненциальное распределение (Лапласа) (рис. А1, г).

Плотность распределения

Интегральная функция распределения

Параметры

Распределение по закону арксинуса (рис. А.1, д).

Плотность распределения

Интегральная функция распределения

Параметры А = 0; E = -1, 5; .

а – равновероятный, в – треугольный (Симпсон), в – нормальный (Гаусса),
двойной экспоненциальный (Лапласа), д) арксинуса

Рисунок А.1. Законы распределения

Приложение Б –Статистические таблицы

Таблица Б1

Зависимость b(n) в критерии Смирнова

n Нормальный Арксинус Равномерный Треугольный Лаплас  
0, 9 0, 95 0, 99 0, 9 0, 95 0, 99 0, 9 0, 95 0, 99 0, 9 0, 95 0, 99 0, 9 0, 95 0, 99
  1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41 1, 41
  1, 87 1, 92 1, 97 1, 90 1, 95 2, 00 1, 87 1, 91 1, 98 1, 86 1, 91 1, 97 1, 91 1, 95 1, 98
  2, 09 2, 18 2, 31 2, 01 2, 14 2, 34 2, 02 2, 14 2, 30 2, 06 2, 15 2, 30 2, 22 2, 30 2, 39
  2, 24 2, 35 2, 53 2, 03 2, 17 2, 45 2, 07 2, 19 2, 46 2, 17 2, 29 2, 44 2, 43 2, 55 2, 69
  2, 34 2, 47 2, 69 2, 00 2, 16 2, 45 2, 09 2, 21 2, 52 2, 23 2, 35 2, 53 2, 60 2, 73 2, 91
  2, 43 2, 56 2, 81 1, 97 2, 13 2, 41 2, 10 2, 22 2, 53 2, 26 2, 40 2, 60 2, 76 2, 92 3, 11
  2, 53 2, 67 2, 95 1, 94 2, 09 2, 38 2, 10 2, 23 2, 52 2, 29 2, 44 2, 64 2, 90 3, 06 3, 30
  2, 55 2, 70 2, 98 1, 91 2, 06 2, 34 2, 09 2, 22 2, 49 2, 32 2, 47 2, 67 2, 98 3, 18 3, 46
  2, 60 2, 75 3, 05 1, 98 2, 01 2, 31 2, 09 2, 21 2, 48 2, 34 2, 49 2, 70 3, 09 3, 28 3, 60
  2, 64 2, 80 3, 10 1, 86 1, 99 2, 27 2, 08 2, 19 2, 47 2, 36 2, 50 2, 71 3, 17 3, 37 3, 71
  2, 68 2, 84 3, 16 1, 85 1, 98 2, 25 2, 08 2, 16 2, 46 2, 38 2, 51 2, 72 3, 26 3, 46 3, 82
  2, 72 2, 88 3, 20 1, 84 1, 97 2, 22 2, 07 2, 15 2, 45 2, 39 2, 51 2, 73 3, 35 3, 55 3, 91
  2, 75 2, 91 3, 24 1, 83 1, 96 2, 21 2, 06 2, 15 2, 44 2, 40 2, 52 2, 73 3, 39 3, 63 4, 00
  2, 78 2, 94 3, 28 1, 82 1, 95 2, 19 2, 06 2, 15 2, 43 2, 41 2, 52 2, 73 3, 48 3, 70 4, 09
  2, 81 2, 97 3, 31 1, 81 1, 94 2, 18 2, 05 2, 14 2, 42 2, 41 2, 52 2, 74 3, 52 3, 76 4, 18
  2, 83 3, 00 3, 34 1, 80 1, 93 2, 17 2, 05 2, 14 2, 40 2, 42 2, 53 2, 74 3, 59 3, 82 4, 26
  2, 85 3, 02 3, 36 1, 79 1, 92 2, 16 2, 04 2, 14 2, 39 2, 42 2, 53 2, 74 3, 64 3, 88 4, 33
  2, 87 3, 04 3, 39 1, 78 1, 91 2, 15 2, 04 2, 13 2, 38 2, 43 2, 53 2, 75 3, 68 3, 93 4, 39
  2, 89 3, 06 3, 41 1, 77 1, 90 2, 14 2, 03 2, 13 2, 37 2, 43 2, 53 2, 75 3, 73 3, 98 4, 45
  2, 91 3, 08 3, 43 1, 77 1, 90 2, 14 2, 03 2, 13 2, 36 2, 44 2, 53 2, 75 3, 78 4, 03 4, 50
                                 

Таблица Б2

Зависимость вероятности Р0 от l в критерии Смирнова

P0 1.000 1.000 1.000 1.000 0.997 0.964 0.864
l 0.0 0.1 0.2 0.3 0.4 0.5 0.6

 


Таблица Б3

Значения для различных К и Р0 в критерии Пирсона

K=L-3 Заданная вероятность P0
0, 90 0, 95 0, 99 0, 999
  2, 71 3, 84 6, 64 10, 83
  4, 60 5, 99 9, 31 13, 82
  6, 22 7, 82 11, 35 16, 27
  7, 78 9, 49 13, 28 18, 46
  9, 24 11, 07 15, 09 20, 50
  10, 65 12, 59 16, 81 22, 50
  12, 02 14, 07 19, 47 24, 30
  13, 36 15, 51 20, 1 26, 10
  14, 68 16, 92 21, 7 27, 90
  15, 99 18, 31 23, 2 29, 60

Таблица Б4

Статистика величины d в составном критерии

а) нормальный

n P=0.9 P=0.95 P=0.99
dmin dmax dmin dmax dmin dmax
  0.7409 0.8899 0.7153 0.9073 0.6675 0.9359
  0.7452 0.8733 0.7263 0.8884 0.6829 0.9137
  0.7495 0.8631 0.7304 0.8768 0.6950 0.9001
  0.7530 0.8570 0.7360 0.8686 0.7040 0.8901
  0.7559 0.8511 0.7404 0.8625 0.7110 0.6827
  0.7583 0.8468 0.7440 0.5778 0.7167 0.8769
  0.7604 0.8436 0.7470 0.8540 0.7216 0.8722
  0.7621 0.8409 0.7496 0.8508 0.7256 0.8682
  0.7636 0.8385 0.7518 0.8481 0.7291 0.8648

б) равномерный

n P=0.9 P=0.95 P=0.99
dmin dmax dmin dmax dmin dmax
  0, 7726 0, 9347 0, 7435 0, 9438 0, 7016 0, 9593
  0, 7860 0, 9277 0, 7696 0, 9375 0, 7379 0, 9556
  0, 8009 0, 9181 0, 7879 0, 9251 0, 7617 0, 9433
  0, 8067 0, 9119 0, 7958 0, 9198 0, 7706 0, 9325
  0, 8166 0, 9103 0, 8056 0, 9187 0, 7826 0, 9312
  0, 8178 0, 9066 0, 8095 0, 9137 0, 7964 0, 9248
  0, 8219 0, 9047 0, 8500 0, 9103 0, 7997 0, 9208
  0, 8258 0, 9014 0, 8197 0, 9069 0, 8007 0, 9172
  0, 8298 0, 8995 0, 8242 0, 9054 0, 8053 0, 9177

 

 

в) треугольный

n P=0.9 P=0.95 P=0.99
dmin dmax dmin dmax dmin dmax
  0, 7292 0, 9117 0, 7067 0, 9238 0, 6638 0, 9455
  0, 7367 0, 8946 0, 7183 0, 9093 0, 6781 0, 9359
  0, 7514 0, 8822 0, 7343 0, 8913 0, 7091 0, 9119
  0, 7604 0, 8771 0, 7430 0, 8867 0, 7203 0, 9049
  0, 7657 0, 8719 0, 7536 0, 8817 0, 7282 0, 8977
  0, 7671 0, 8678 0, 7550 0, 8768 0, 7315 0, 8901
  0, 7707 0, 8618 0, 7608 0, 8719 0, 7409 0, 8859
  0, 7735 0, 8601 0, 7628 0, 8689 0, 7433 0, 8800
  0, 7747 0, 8599 0, 7729 0, 8678 0, 7423 0, 8770

г) Лаплас

n P=0.9 P=0.95 P=0.99
dmin dmax dmin dmax dmin dmax
  0, 6313 0, 8790 0, 6187 0, 8966 0, 5713 0, 9226
  0, 6362 0, 8556 0, 6217 0, 8718 0, 5729 0, 9139
  0, 6371 0, 8400 0, 6231 0, 8573 0, 5741 0, 8809
  0, 6383 0, 8277 0, 6250 0, 8399 0, 5769 0, 8702
  0, 6431 0, 8145 0, 6259 0, 8272 0, 5793 0, 8675
  0, 6439 0, 8068 0, 6268 0, 8236 0, 5896 0, 8519
  0, 6458 0, 8022 0, 6285 0, 8147 0, 5900 0, 8458
  0, 6463 0, 7967 0, 6313 0, 8069 0, 5907 0, 8324
  0, 6486 0, 7941 0, 6341 0, 8061 0, 6073 0, 8125

д) арксинус

n P=0.9 P=0.95 P=0.99
dmin dmax dmin dmax dmin dmax
  0, 7937 0, 9558 0, 7680 0, 9664 0, 7226 0, 9803
  0, 8098 0, 9519 0, 7922 0, 9616 0, 7529 0, 9765
  0, 8290 0, 9427 0, 8179 0, 9512 0, 7773 0, 9661
  0, 8376 0, 9382 0, 8260 0, 9459 0, 7965 0, 9633
  0, 8466 0, 9340 0, 8352 0, 9433 0, 8109 0, 9586
  0, 8478 0, 9318 0, 8385 0, 9403 0, 8167 0, 9545
  0, 8524 0, 9304 0, 8444 0, 9364 0, 8219 0, 9526
  0, 8561 0, 9293 0, 8477 0, 9361 0, 8246 0, 9516
  0, 8622 0, 9273 0, 8530 0, 9329 0, 8383 0, 9510

 


Таблица Б5

Коэффициент распределения Стьюдента для числа измерений n

n Доверительная вероятность P
0.9 0.95 0.99 0.999
  6.31 12.71 63.68 636.62
  2.92 4.30 9.93 31.60
  2.35 3.18 5.84 12.92
  2.13 2.78 4.60 8.61
  2.02 2.57 4.06 6.87
  1.94 2.45 3.71 5.96
  1.9 2.37 3.50 5.41
  1.86 2.31 3.36 5.04
  1.83 2.26 3.25 4.78
  1.81 2.23 3.17 4.59
  1.80 2.20 3.11 4.44
  1.78 2.18 3.06 4.32
  1.77 2.16 3.01 4.22
  1.76 2.15 2.98 4.14
  1.75 2.13 2.95 4.07
  1.75 2.12 2.92 4.02
  1.74 2.11 2.90 3.97
  1.73 2.10 2.88 3.92
  1.73 2.09 2.86 3.88
¥ 1.65 1.96 2.58 3.29

 


Таблица Б6

Функция Лапласа

z Ф(z) z Ф(z) z Ф(z) z Ф(z)
0.00 0.0000 0.60 0.2257 1.20 0.3849 1.80 0.4641
0.02 0.0080 0.62 0.2324 1.22 0.3888 1.82 0.4656
0.04 0.0160 0.64 0.2389 1.24 0.3925 1.84 0.4671
0.06 0.0239 0.66 0.2454 1.26 0.3962 1.86 0.4686
0.08 0.0319 0.68 0.2517 1.28 0.3997 1.88 0.4699
0.10 0.0398 0.70 0.2580 1.30 0.4032 1.90 0.4713
0.12 0.0478 0.72 0.2642 1.32 0.4066 1.92 0.4726
0.14 0.0557 0.74 0.2703 1.34 0.4099 1.94 0.4738
0.16 0.0636 0.76 0.2764 1.36 0.4131 1.96 0.4750
0.18 0.0714 0.78 0.2823 1.38 0.4162 1.98 0.4761
0.20 0.0793 0.80 0.2881 1.40 0.4192 2.00 0.4772
0.22 0.0871 0.82 0.2939 1.42 0.4222 2.05 0.4798
0.24 0.0948 0.84 0.2995 1.44 0.4251 2.10 0.4821
0.26 0.1026 0.86 0.3051 1.46 0.4279 2.15 0.4842
0.28 0.1103 0.88 0.3106 1.48 0.4306 2.20 0.4860
0.30 0.1179 0.90 0.3159 1.50 0.4332 2.25 0.4877
0.32 0.1255 0.92 0.3212 1.52 0.4357 2.30 0.4892
0.34 0.1331 0.94 0.3264 1.54 0.4382 2.35 0.4906
0.36 0.1406 0.96 0.3315 1.56 0.4406 2.40 0.4918
0.38 0.1480 0.98 0.3365 1.58 0.4429 2.45 0.4928
0.40 0.1554 1.00 0.3413 1.60 0.4452 2.50 0.4938
0.42 0.1628 1.02 0.3461 1.62 0.4474 2.60 0.4953
0.44 0.1700 1.04 0.3508 1.64 0.4495 2.70 0.4965
0.46 0.1772 1.06 0.3554 1.66 0.4515 2.80 0.4974
0.48 0.1844 1.08 0.3599 1.68 0.4535 2.90 0.4981
0.50 0.1915 1.10 0.3643 1.70 0.4554 3.00 0.4986
0.52 0.1985 1.12 0.3686 1.72 0.4573 3.20 0.4993
0.54 0.2054 1.14 0.3729 1.74 0.4591 3.40 0.4996
0.56 0.2123 1.16 0.3770 1.76 0.4608 3.60 0.4998
0.58 0.2190 1.18 0.3810 1.78 0.4625 3.80 0.4999

 

Таблица Б7

Значения (1-Р) ¾ процентных точек распределения Фишера

K2 P K1
                  ¥
  0.9 4.11 3.94 3.88 3.84 3.83 3.82 3.80 3.79 3.78 3.76
0.95 6.39 6.00 5.87 5.81 5.77 5.75 5.72 5.70 5.66 5.63
0.99 16.0 14.7 14.2 14.0 13.9 13.9 13.8 13.7 13.6 13.5
  0.9 2.69 2.44 2.35 2.31 2.28 2.26 2.23 2.22 2.19 2.16
0.95 4.26 3.18 3.02 2.95 2.90 2.87 2.83 2.80 2.76 2.71
0.99 8.02 5.35 5.00 4.84 4.73 4.66 4.57 4.52 4.42 4.31
  0.9 2.39 2.12 2.02 1.97 1.94 1.92 1.89 1.87 1.83 1.80
0.95 3.11 2.65 2.48 2.40 2.35 2.31 2.27 2.24 2.19 2.13
0.99 5.56 4.03 3.70 3.54 3.43 3.36 3.27 3.22 3.11 3.00
  0.9 2.27 1.98 1.88 1.82 1.79 1.76 1.73 1.71 1.67 1.63
0.95 2.90 2.42 2.26 2.17 2.11 2.08 2.03 2.00 1.94 1.88
0.99 4.50 3.53 3.19 3.03 2.93 2.86 2.77 2.71 2.60 2.49
  0.9 2.19 1.91 1.80 1.74 1.70 1.68 1.64 1.62 1.58 1.53
0.95 2.78 2.30 2.13 2.05 1.98 1.95 1.90 1.86 1.80 1.73
0.99 4.22 3.26 2.93 2.77 2.66 2.59 2.50 2.44 2.33 2.21
  0.9 2.15 1.86 1.75 1.69 1.65 1.62 1.59 1.56 1.52 1.47
0.95 2.70 2.22 2.05 1.96 1.90 1.86 1.81 1.78 1.71 1.64
0.99 4.04 3.09 2.77 2.60 2.49 2.43 2.33 2.28 2.16 2.03
  0.9 2.10 1.79 1.68 1.62 1.58 1.55 1.52 1.49 1.44 1.39
0.95 2.61 2.13 1.95 1.86 1.79 1.76 1.70 1.67 1.60 1.52
0.99 3.83 2.89 2.57 2.41 2.29 2.22 2.14 2.08 1.95 1.82
  0.9 2.09 1.74 1.68 1.58 1.52 1.49 1.46 1.45 1.40 1.34
0.95 2.56 2.07 1.90 1.78 1.74 1.66 1.64 1.61 1.54 1.40
0.99 3.73 2.79 2.47 2.28 2.19 2.11 2.02 1.96 1.85 1.62
  0.9 2.00 1.70 1.58 1.51 1.47 1.44 1.39 1.37 1.30 1.22
0.95 2.46 1.97 1.79 1.60 1.63 1.59 1.50 1.49 1.39 1.28
0.99 3.51 2.59 2.26 2.10 1.98 1.93 1.80 1.74 1.59 1.43
  ¥ 0.9 1.94 1.63 1.51 1.43 1.38 1.35 1.30 1.26 1.18 1.00
0.95 2.37 1.88 1.69 1.59 1.52 1.47 1.40 1.35 1.24 1.00
0.99 3.32 2.41 2.07 1.91 1.79 1.72 1.60 1.53 1.36 1.00

 

 

СПИСОК ЛИТЕРАТУРЫ

1. Грановский В.А., Сирая Т.Н. Методы обработки экспериментальных данных при измерениях. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1990.-288с.

2. Долинский Е.Ф. Обработка результатов измерений М.: Изд-во стандартов, 1973.-192 с.

3. Захаров И.П. Теоретическая метрология. - Харьков: ХТУРЭ, 2000.-.172 с.

4. Кукуш В.Д. Определение погрешностей результатов и средств из­мерений. - Харьков: ХПИ, 1979. -116с.

5. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов из-цяерений. - Л.: Энергоатомиздат, 1985. - 248 с.

6. Рабинович С.Г. Погрешности измерений. - Л.: Энергия. Ленинградское отд-ние, 1978.- 262 с.

7. Степнов М.Н. Статистические методы обработки результатов ме­ханических испытаний: Справочник. - М.: Машиностроение, 1985.- 232 с.

8. Фильчаков П.Ф. Численные и графические методы прикладной ма­тематики. Справочник. - Киев: Наук. Думка, 1970.- 800 с.

9. Фрумкин В.Д., Рубичев Н.А. Теория вероятности и статистика в метрологии и измерительной технике М.: Машиностроение, 1987.- 168с.







Дата добавления: 2014-12-06; просмотров: 1104. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия