Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале [6;11]. Найти математическое оидание и дисперсию величины Х





Решение:

Найдем f(x)=F’(x)

Вероятность попадания в интервал:

Математическое ожидание

Дисперсия:


 

Задача 18

1)

2) Мода (Мо) – это величина изучаемого признака, которая в данной совокупности встречается наиболее часто

Мо=3, 15

3) Медиана (Mе) – это величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда.

Ме=(7-0, 5)/2=3, 25

4) Среднее выборочное значение

М(x)=3

5) Асимметрия

Наличие правосторонней асимметрии указывает на положительную величину коэффициента асимметрии

As> 0

6) Эксцесс

Ex > 0 - островершинное распределение

Задача 19

Решение:

Для удобства отсортируем данные по возрастанию:

3; 3, 23; 3, 34; 3, 4; 3, 67; 3, 88; 4, 02; 4, 03; 4, 14; 4, 29; 4, 3; 4, 42; 4, 43; 4, 44; 4, 46; 4, 48; 4, 59; 4, 62; 4, 64; 4, 68; 4, 72; 4, 74; 4, 81; 4, 83; 4, 84; 4, 87; 4, 88; 4, 9; 5, 01; 5, 08; 5, 09;

5, 17; 5, 18; 5, 2; 5, 22; 5, 22; 5, 23; 5, 3; 5, 31; 5, 32; 5, 32; 5, 32; 5, 33; 5, 39; 5, 46; 5, 47;

5, 49; 5, 55; 5, 64; 5, 65; 5, 77; 5, 8; 5, 87; 5, 87; 5, 89; 5, 9; 5, 94; 6, 14; 6, 16; 6, 18; 6, 24;

6, 35; 6, 4; 6, 44; 6, 46; 6, 48; 6, 49; 6, 61; 6, 68; 6, 73; 6, 76; 7, 15; 7, 19; 7, 37; 7, 4; 7, 59;

7, 69; 8, 03; 8, 03; 9

 

Разбиваем на интервалы.

Ширина интервала составит:

 

 

Xmax - максимальное значение группировочного признака в совокупности.

Xmin - минимальное значение группировочного признака.

 

Группы xi Кол-во, fi xi * fi Накопленная частота, S |x - xср|*f (x - xср)2*f Частота, fi/n
3 – 4 3.5       12.08 24.3 0.075
4 – 5 4.5       22.28 22.55 0.28
5 – 6 5.5   159.5   0.36 0.00453 0.36
6 – 7 6.5       13.83 13.65 0.18
7 – 8 7.5       11.93 23.7 0.075
8 – 9 8.5   25.5   8.96 26.78 0.0375
Сумма         69.43 110.99  

 

Медиана.

Медиана делит выборку на две части: половина вариант меньше медианы, половина — больше.

В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 5 - 6, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).

 

 

Таким образом, 50% единиц совокупности будут меньше по величине 5.41

 

Среднее значение

 

 


Выборочная дисперсия

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

 

 

Среднее квадратическое отклонение (средняя ошибка выборки).

 

Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).

 

 

Среднее квадратическое отклонение (средняя ошибка выборки).

 

Каждое значение ряда отличается от среднего значения 5.51 в среднем на 1.18

Гистограмма частот Х

N(2≤ x≤ 3)=0


Мода.

Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

 

где x0 – начало модального интервала; h – величина интервала; f2 –частота, соответствующая модальному интервалу; f1 – предмодальная частота; f3 – послемодальная частота.

Выбираем в качестве начала интервала 5, так как именно на этот интервал приходится наибольшее количество.

 

Наиболее часто встречающееся значение ряда – 5.32

Наиболее точным и распространенным показателем асимметрии является моментный коэффициент асимметрии.

As = M3/s3

где M3 - центральный момент третьего порядка.

s - среднеквадратическое отклонение.

M3 = 68.84/80 = 0.86

 

Положительная величина указывает на наличие правосторонней асимметрии

Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.

Чаще всего эксцесс оценивается с помощью показателя:

 

Для распределений более островершинных (вытянутых), чем нормальное, показатель эксцесса положительный (Ex > 0), для более плосковершинных (сплюснутых) - отрицательный (Ex < 0), т.к. для нормального распределения M4/s4 = 3.

M4 = 467.45/80 = 5.84

 

Число 3 вычитается из отношения μ 4/ σ 4 потому, что для нормального закона распределения μ 4/ σ 4 = 3. Таким образом, для нормального распределения эксцесс равен нулю. Островершинные кривые обладают положительным эксцессом, кривые более плосковершинные - отрицательным эксцессом.

Ex > 0 - островершинное распределение

 

 







Дата добавления: 2014-12-06; просмотров: 1415. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия