Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание установки и метода измерений. В настоящей работе для определения момента инерции тела, масса и размеры которого неизвестны (круглого стержня А)





В настоящей работе для определения момента инерции тела, масса и размеры которого неизвестны (круглого стержня А), используют тело с известным моментом инерции (сплошной цилиндр В). Цилиндр, жёстко связанный с проволочным подвесом С, закреплен на штативе К (рис. 3.1). Если цилиндр вывести из положения равновесия, повернув его на небольшой угол , и предоставить самому себе, он будет совершать крутильные колебания. При деформации кручения в проволоке возникает возвращающий момент сил , пропорциональный углу поворота

, (3.1)

где D – модуль кручения проволоки. Знак ² –² говорит о том, что момент сил возвращает систему в положение равновесия.

Основной закон динамики вращательного движения для данного случая, с учетом (3.1), имеет вид

, (3.2)

где – угловое ускорение тела.

Далее, введя обозначение , уравнению (3.2) можно придать вид

, или . (3.3)

Уравнение (3.3) является однородным дифференциальным уравнением второго порядка. Из него следует, что угол поворота тела представляет собой следующую функцию времени:

, (3.4)

т. е. под действием момента силы, пропорционального углу поворота, тело совершает гармоническое колебательное движение.

Анализ уравнения (3.4) позволяет установить, что постоянные интегрирования и представляют собой амплитуду и начальную фазу колебаний соответственно, а – циклическую частоту, которая связана с периодом колебаний соотношением .

Из последней формулы находим период крутильных колебаний

. (3.5)

Если известен модуль кручения, то, используя формулу (3.5), можно найти момент инерции тела или системы тел, так как период колебаний легко определяется на опыте путем измерения времени , за которое тело совершает колебаний

.

В настоящей работе модуль кручения проволоки неизвестен, поэтому находят период колебаний цилиндра и период колебаний системы ² цилиндр – стержень² по формулам:

, (3.6)

, (3.7)

где – момент инерции цилиндра, – момент инерции системы ² цилиндр – стержень², равный сумме их моментов инерции .

Из совместного решения уравнений (3.6) и (3.7) следует, что

,

откуда момент инерции стержня равен

. (3.8)

Момент инерции цилиндра относительно оси вращения, совпадающей с его осью симметрии, известен

. (3.9)

Подставив (3.9) в (3.8), получим окончательную формулу для расчёта экспериментального значения момента инерции стержня:

. (3.10)

Теоретически момент инерции сплошного круглого стержня радиусом Rс относительно оси симметрии, перпендикулярной его длине, lс, рассчитывается по формуле

. (3.11)







Дата добавления: 2014-10-29; просмотров: 808. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия