Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача №2. Определение напряжений в грунтовом основании от действия прямоугольной нагрузки приложенной на его поверхности





Определение напряжений в грунтовой толще от действия внешних нагрузок необходимо для установления условий прочности и устойчивости грунтов, определения деформаций и осадок оснований фундаментов.

В большинстве практических случаев при решении вопроса о распределении напряжений в грунтах в механике грунтов применяют теорию линейно деформируемых тел. Для определения напряжений по этой теории будут полностью справедливы уравнения теории упругости, также базирующиеся на линейной зависимости между напряжениями и деформациями (закон Гука).

Определение сжимающих напряжений от действия прямоугольной нагрузки в произвольной точке основания производится на основе метода угловых точек. Значение величин сжимающих напряжений для угловых точек прямоугольной площади загрузки позволяет очень быстро вычислить сжимающие напряжения для любой точки полупространства (грунтового основания) если пользоваться значениями угловых коэффициентов α и α с.

Для точек расположенных по вертикальной оси под центром загруженного прямоугольника сжимающие напряжения σ = α р

А для точек расположенных по вертикальной оси под углом загруженного прямоугольника

σ zрс = α ср

где α – коэффициент, принимаемый по таблице в зависимости от соотношения сторон η = l/b прямоугольной нагрузки (формы подошвы фундамента) и относительной глубины, равной:

ξ =2z/b – при определении σ .

α с= α /4 – коэффициент, при определении α в данном случае по таблице 2.1 η = l/b, а относительная глубина ξ =z/b.

Характерный вид эпюр σ показан на рисунке 2.1.

Рис. 2.1. Эпюра сжимающих напряжений σ от дествия внешней равномерно-распределенной прямоугольной нагрузки

 

Метод угловых точек для определения сжимающих напряжений σ применяют в случае, когда грузовая площадь может быть разбита на такие прямоугольники, чтобы рассматриваемая точка оказалась угловой. Тогда сжимающее напряжение в этой точке на любой глубине будет равно алгебраической сумме напряжений от прямоугольных площадей загрузки, для которых эта точка является угловой.

Рассмотрим три основных случая:

1) Точка М находится на контуре прямоугольника внешних воздействий (рис. 2.2а);

2) Точка М находится внутри прямоугольника давлений

(рис. 2.2б);

3) Точка М находится вне прямоугольника давлений (рис. 2.2в).

В первом случае величина σ zр на заданной глубине z под точкой М определяется как сумма двух угловых напряжений, соответсивующих прямоугольника 1 и 2, т.е.:

σ zрм =(α с1с2

Во втором случае необходимо суммировать угловые напряжения от четырех прямоугольных площадей загрузки 1, 2, 3, 4:

σ zрм =(α с1с2с3с4

В третьем случае напряжение в точке М складывается из суммы напряжений от действия нагрузки по прямоугольникам 1 и 2, взятых со знаком “плюс”, и напряжений от действия нагрузки по прямоугольникам 3 и 4, взятых со знаком “минус”

σ zрм =(α с1с2с3с4

Используя исходные данные для конкретного варианта (табл.2.2) определяются напряжения σ zр под центром и под серединой длинной стороны загруженного прямоугольника в трех точках по глубине основания z=0, 5b; 1, 0b и 2b и строятся эпюры напряжений.

 

Таблица 2.1.







Дата добавления: 2014-10-29; просмотров: 3525. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия