Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание К1





4.1.1. Пример решения контрольного задания К1

Пусть точка М движется в плоскости xOy в соответствии с уравнениями

.

Для момента времени = 0, 5 с найти положение точки М на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Решение

Заданный закон движения точки в координатной форме можно рассматривать как параметрические уравнения траектории точки. Исключим время t из уравнений движения и получим уравнение траектории точки в виде:

= 1.

Таким образом, траекторией точки М является эллипс со смещенным центром, изображенный на рис. 4.1. Отметим на траектории положение точки М 1 (x 1, y 1) в момент времени t 1 = 0, 5 c

см;

см.

Вектор скорости точки представим в виде:

,

где – орты координатных осей Оx и Оy; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от соответствующих координат по времени

В момент времени t 1 = 0, 5 c

Вектор скорости точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор должен быть направлен по касательной к траектории точки в сторону движения. Модуль скорости точки определим по уже найденным проекциям

Вектор ускорения точки представим в виде:

,

где – орты координатных осей Оx и Оy; – проекции вектора скорости точки на координатные оси, которые равны 1-м производным от проекций вектора скорости или 2-м производным от соответствующих координат по времени:

В момент времени t 1 = 0, 5 c

Вектор ускорения точки строим по двум взаимно перпендикулярным проекциям и в соответствии с выбранным масштабом

.

Полученный вектор ускорения точки в общем случае должен отклоняться от вектора скорости в сторону вогнутости траектории, а при движении по эллипсовидной траектории – проходить через центр эллипса. Модуль ускорения точки определим по уже найденным проекциям

Вектор полного ускорения точки можно также представить в виде геометрической суммы его проекций на оси естественной системы отсчета

,

где и – единичные орты касательной и главной нормали; и – соответственно проекции вектора ускорения на касательную и главную нормаль. Касательную М 1t направляем по касательной к траектории в сторону движения точки движения, а главную нормаль М 1 n – перпендикулярно касательной в сторону вогнутости траектории. При вычислении касательного ускорения удобно воспользоваться формулой, устанавливающей связь между координатным и естественным способами задания движения точки

.

В момент времени t 1 = 0, 5 c

.

Значение касательного ускорения имеет отрицательный знак, следовательно, в данный момент времени движение точки замедленное и вектор касательного ускорения направлен в противоположную сторону направлению вектора скорости точки .

Нормальное ускорение вычислим по формуле , если известен радиус кривизны траектории. Например, если точка движется по окружности радиусом R, то в любой точке траектории ρ = R. Если же траекторией движения точки является прямая, то , следовательно, . В данном случае радиус кривизны траектории заранее не известен, поэтому нормальное ускорение определяем по формуле:

.

В момент времени t 1 = 0, 5 c

.

Построим векторы и в соответствии с уже выбранным масштабом, а затем сложим их геометрически. В результате получим тот же вектор полного ускорения точки , который ранее уже был получен геометрической суммой составляющих и . Этот факт служит контролем правильности решения.

Радиус кривизны траектории в рассматриваемой точке определим по формуле

.

В момент времени t 1 = 0, 5 c

.

Результаты всех вычислений для заданного момента времени приведены в табл. 4.1.

Таблица 4.1

Координаты, см Скорости, см/с Ускорения, ρ, см
x y
8, 82 2, 59 4, 44 2, 22 4, 96 –6, 97 3, 49 7, 79 –4, 67 6, 23 3, 95

Примечание. В последнем столбце через ρ обозначен радиус кривизны траектории в точке .

4.1.2. Условие и варианты задания К1

По заданным уравнениям движения точки М установить вид ее траектории и для момента времени найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Исходные данные для решения приведены в табл. 4.2.

Таблица 4.2

Номер варианта Уравнения движения Время с
, см , см
  К1-1  
  К1-2  
  К1-3  
К1-4 –4 t 0, 5
К1-5  
  К1-6  
  К1-7  
К1-8 –3 t 0, 5
  К1-9  
  К1-10  
  К1-11  
К1-12 3 t 4 t 2 + 1 0, 5

 

Продолжение табл. 4.2

Номер варианта Уравнения движения Время с
  К1-13  
  К1-14  
К1-15 –5 t 2 – 4 3 t  
  К1-16   2 – 3 t – 6 t 2  
  К1-17  
К1-18 7 t 2 – 3 5 t 0, 25
  К1-19   3 – 3 t 2 + t  
  К1-20  
К1-21 –6 t 2 t 2 – 4  
  К1-22  
  К1-23  
К1-24 –4 t 2 + 1 –3 t  

 







Дата добавления: 2014-10-29; просмотров: 852. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия