Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 2. Растяжение – сжатие





Нормальная сила. При растяжении или сжатие в поперечных сечениях бруса возникает только один внутренний силовой фактор – нормальная сила (рис. 3). Брус имеет два характерных участка. Для определения нормальной силы воспользуемся методом сечения. На расстоянии проведем сечение на первом участке и рассмотрим равновесие отсеченной части (рис. 4). Нормальную силу будем всегда показывать от сечения, что будет соответствовать растяжению бруса.

Составим условие равновесия на ось

Проведем на втором участке сечение на расстоянии . Рассматривая равновесие отсеченной части, получаем . Строим эпюру нормальных сил.

Нормальные напряжения. Исходя из определения напряжения, можно записать

Рис. 4

 

 

,

 

где нормальное напряжение в произвольной точке сечения.

Согласно гипотезе Бернулли (гипотеза плоских сечений) все продольные волокна бруса деформируются одинаково, а это означает, что напряжения в поперечных сечениях одинаковы, т.е. .

В этом случае получаем

 

, откуда .

 

Рассчитывая напряжения в каждом сечении, строим эпюру нормальных напряжений.

 

 

Перемещения и деформации. При растяжении бруса длиной его длина увеличивается на величину , а его диаметр уменьшается на величину (рис.5).

Величина называется абсолютной продольной деформацией, а абсолютной поперечной деформацией.

О степени деформирования бруса нельзя судить по значениям и , так как они зависят не только от действующих сил, но и от

Рис.5

 

начальных размеров бруса. Для характеристики деформации бруса вводятся понятия относительная продольная деформация и относительная поперечная деформация , которые рассчитываются по зависимостям

 

 

Отношение называется коэффициентом поперечной деформации или коэффициентом Пуассона.

Для большинства материалов в стадии упругой деформации выполняется соотношение, представляющее собой математическое выражение закона Гука

 

 

где коэффициент пропорциональности, который получил название модуля упругости первого рода.

Подставляя в выражение закона Гука и , получим зависимость для определения абсолютного удлинения бруса

 

откуда

 

Произведение называется жесткостью бруса при растяжении (сжатии).

Определяя перемещения каждого сечения, строим эпюру продольных перемещений сечений бруса (рис. 3).

 







Дата добавления: 2014-10-29; просмотров: 833. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия