Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 3. Геометрические характеристики плоских сечений





Статические моменты сечения. Любое сечение бруса имеет определенную геометрическую форму и площадь (рис.7).

Выделим в сечение элементарную площадку , положение которой определено координатами x и y. Статическим моментом сечения называется интеграл по площади произведения элементарной

площадки на расстояние до оси. Статические моменты сечения относительно осей x и y будут соответственно равны

 

 

Определение центра тяжести сечения. Статические моменты сечения относительно осей проходящих через центр тяжести равны нулю, поэтому их используют для определения координат центров тяжести сечения. Для этого проводят вспомогательные оси x и y и координаты центра тяжести сечения определяют по зависимостям:

 

.

 

Моменты инерции сечения. Осевым моментом инерции сечения называется интеграл по площади произведения элементарной площадки на квадрат расстояния до оси. Осевые моменты инерции сечения относительно осей x и y будут соответственно равны

 

 

Полярным моментом инерции сечения называется интеграл по площади произведения элементарной площадки на квадрат расстояния до начало координат.

 

 

Учитывая, что , получаем

Полярный момент инерции сечения равен сумме осевых моментов инерции сечения.

Центробежным моментом инерции сечения называется интеграл по площади произведения элементарной площадки на расстояния до осей.

 

 

Если сечение имеет ось симметрии, то центробежный момент инерции сечения равен нулю.

Определение моментов инерции простых геометрических фигур. Рассмотрим определения момента инерции прямоугольного сечения относительно оси, проходящей через центр тяжести (рис. 8).

Выделим элементарную площадь на расстоянии от центральной оси толщиной . Согласно определению, осевой момент инерции относительно оси равен

 

.

В нашем случае элементарная площадь . Подставляя значения и изменяя пределы интегрирования, получаем

 

.

 

Аналогичным образом определяются моменты инерции плоского сечения.

Рис.9

Если известен момент инерции сечения относительно оси проходящей через центр тяжести (рис. 9), то момент инерции относительно другой параллельной оси, отстоящей на расстоянии , определяется по формуле Штейнера

 

.

 

Если сечение имеет сложную геометрическую форму, то его разбивают на простые фигуры и его момент инерции рассчитывают, как сумму моментов инерции отдельных фигур.

Найдем зависимость между моментами инерции относительно осей х, у и моментами инерции относительно осей u, v, повернутых на угол . Угол считается положительным, если поворот осуществляется и против часовой стрелки. Пусть координаты элементарной площадки до поворота – x, y, после поворота – u, v (рис. 10).

Из рисунка следует:

 

.

 

 

Рис. 10

В этом случае

 

Главные оси инерции и главные моменты инерции. С изменением угла поворота осей каждая из величин и меняется, а сумма их остается неизменной. Следовательно, существует такое значение , при котором моменты инерции достигают экстремальных значений, т.е. один из моментов инерции достигает своего максимального значения, в то время другой момент инерции принимает минимальное значение. Для нахождения значения возьмем первую производную от и приравняем ее нулю:

 

 

откуда

 

Нетрудно показать, что центробежный момент относительно осей, повернутых на угол , равен нулю.

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения, называются главными осями. Если эти оси являются также и центральными, то они называются главными центральными осями.

Осевые моменты инерции относительно главных осей называются главными моментами инерции. Если сечение имеет ось симметрии, то эта ось всегда является одной из главных центральных осей инерции сечения.

Момент сопротивления сечения. Момент сопротивления сечения относительно оси представляет собой отношение момента инерции относительно данной оси к расстоянию до наиболее удаленной точки сечения от этой же оси.

 

.

 

Момент сопротивления прямоугольного сечения, изображенного на рис. 8, относительно оси, проходящей через центр тяжести, равен

.

 

Полярный момент инерции представляет собой отношение полярного момента инерции к наибольшему расстоянию от центра тяжести сечения до наиболее удаленной точки сечения

 







Дата добавления: 2014-10-29; просмотров: 1379. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия