Студопедия — Скорость точки является характеристикой быстроты и направления ее движения
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скорость точки является характеристикой быстроты и направления ее движения






Пусть точка (рис. 2.5, а) движется по криволинейной траектории согласно закону . Положим, что в момент времени точка занимает положение , а в момент времени положение , пройдя за время путь .

 

Отношение приращения дуговой координаты к промежутку времени , за которое произошло это приращение, называется средней скоростью точки за время (2.4)

Очевидно, что, чем меньше промежуток времени , тем ближе значение

подходит к величине действительной скорости точки в момент времени .

Мгновенной Скоростью называется предел при :

; . (2.5)

Итак, величина скорости точки равна производной от расстояния (дуговой ко­ординаты) по времени. Следовательно, она измеряется в единицах длины, отне­сенных к единице времени (м/с, см/с). Формула (2.5) определяет величину скоро­сти точки.

Чтобы знать не только величину скорости, но и ее направление, введем понятие вектора скорости. Для этого будем определять движение в векторной форме (2.2). В момент времени положение точки (рис. 2.5, б) определяется радиусом-век­тором , а в момент времени , соответствующий положению , - радиу­сом-вектором .

Отношение приращения радиуса-вектора к промежутку времени , в тече­ние которого произошло это приращение, называется вектором средней скоро­сти точки за время , т. е.

(2.6)

Направление вектора совпадает с направлением вектора . Рассматривая предел отношения (2.6) при приближении к нулю, получим .

Из равенства (2.7) следует, что вектор всегда направлен по касательной

к тра­ектории в точке .

Итак, вектор скорости точки равен производной от радиуса-вектора по

времени.

Равенство (2.7) можно представить в виде .

Вектор , направлен по касательной к траектории в сторону возрастания дуговой координаты и равен по модулю единице. Он называется единичным вектором касательной и обозначается . Следовательно, можно записать

.

Отсюда следует, что определенная равенством (2.5) алгебраическая вели­чина представляет собой проекцию вектора скорости на направление единичного вектора касательной.







Дата добавления: 2014-10-29; просмотров: 1040. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия