Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Момент инерции тела относительно оси





 

Пусть имеется твердое тело. Выберем некоторую прямую ОО (рис.3.1), которую будем называть осью (прямая ОО может быть и вне тела). Разобьем тело на эле­мен­тар­ные участки (материальные точки) масс­са­ми Δ m , Δ m ,..., Δ m , находящиеся от оси на расстоянии соответственно r , r ,... r .

Моментом инерции материальной точки относительно оси OO называется произведение массы материальной точки на квадрат ее расстояния до этой оси:

 

D Ii = D mi ri2. (3.1)

 

Моментом инерции (МИ) тела относительно оси ОО называется сумма произведений масс элементарных участков тела на квадрат их расстояния до оси:

I = . (3.2)

 

Как видно, момент инерции тела есть величина аддитивная - момент инерции всего тел относительно некоторой оси равен сумме моментов инерции отдельных его частей относительно той же оси.

В данном случае

.

Измеряется момент инерции в кг·м .

Так как

D mi = r D Vi, (3.3)

 

где ρ - плотность вещества; D Vi - объем i - го участка, то или, переходя к бесконечно малым элементам,

 

I = . ( 3.4)

 

Формулу (3.4) удобно использовать для вычисления МИ однородных тел правильной формы относительно оси симметрии, проходящей через центр масс тела. Например, для МИ цилиндра относительно оси, проходящей через центр масс параллельно образующей, эта формула дает

 

,

где m - масса; R - радиус цилиндра.

Большую помощь при вычислениях МИ тел относительно некоторых осей оказывает теорема Штейнера: МИ тела I относительно любой оси равен сумме МИ этого тела Iс относительно оси, проходящей через центр масс тела и параллельно данной, и произведения массы тела на квадрат расстояния d между указанными осями:

 

I = Iс+ m d2. (3.5)

 







Дата добавления: 2014-10-29; просмотров: 846. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия