Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Момент инерции тела относительно оси





 

Пусть имеется твердое тело. Выберем некоторую прямую ОО (рис.3.1), которую будем называть осью (прямая ОО может быть и вне тела). Разобьем тело на эле­мен­тар­ные участки (материальные точки) масс­са­ми Δ m , Δ m ,..., Δ m , находящиеся от оси на расстоянии соответственно r , r ,... r .

Моментом инерции материальной точки относительно оси OO называется произведение массы материальной точки на квадрат ее расстояния до этой оси:

 

D Ii = D mi ri2. (3.1)

 

Моментом инерции (МИ) тела относительно оси ОО называется сумма произведений масс элементарных участков тела на квадрат их расстояния до оси:

I = . (3.2)

 

Как видно, момент инерции тела есть величина аддитивная - момент инерции всего тел относительно некоторой оси равен сумме моментов инерции отдельных его частей относительно той же оси.

В данном случае

.

Измеряется момент инерции в кг·м .

Так как

D mi = r D Vi, (3.3)

 

где ρ - плотность вещества; D Vi - объем i - го участка, то или, переходя к бесконечно малым элементам,

 

I = . ( 3.4)

 

Формулу (3.4) удобно использовать для вычисления МИ однородных тел правильной формы относительно оси симметрии, проходящей через центр масс тела. Например, для МИ цилиндра относительно оси, проходящей через центр масс параллельно образующей, эта формула дает

 

,

где m - масса; R - радиус цилиндра.

Большую помощь при вычислениях МИ тел относительно некоторых осей оказывает теорема Штейнера: МИ тела I относительно любой оси равен сумме МИ этого тела Iс относительно оси, проходящей через центр масс тела и параллельно данной, и произведения массы тела на квадрат расстояния d между указанными осями:

 

I = Iс+ m d2. (3.5)

 







Дата добавления: 2014-10-29; просмотров: 846. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия