Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интервальные оценки. Выборка является образом генеральной совокупности, ее параметры – образами параметров всей генеральной совокупности





Выборка является образом генеральной совокупности, ее параметры – образами параметров всей генеральной совокупности. Вычисленные по выборке эмпирические числовые характеристики являются оценками этих характеристик всей генеральной совокупности. Если из той же генеральной совокупности сделаем другую выборку, то получим несколько иные значения. Следовательно, мы допускаем некоторую ошибку, находя точечную оценку. Чтобы избежать этого, строят интервальные оценки.

Интервальной оценкой называют такую оценку, которая определяется двумя числами, являющимися концами интервала, покрывающего оцениваемый параметр статистической совокупности.

Пусть – неизвестный параметр распределения, – найденная по данным выборки статистическая характеристика этого параметра. Тогда тем точнее определяет , чем меньше абсолютная величина разности

Надежностью (доверительнойвероятностью) оценки называют вероятность , с которой осуществляется неравенство

Обычно в качестве берут числа, близкие к единице (чаще всего 0, 9; 0, 95; 0, 98; 0, 99; 0, 9975).

или

.

Доверительным интервалом называют интервал , который покрывает неизвестный параметр с надежностью , где – предельная ошибка выборочной оценки.

1. Доверительный интервал для математического ожидания (а) при известном среднем квадратическом отклонении () находится из условия:

, (2)

где n – объем выборки;

– выборочная средняя;

k b – аргумент функции Лапласа, при котором .

Число определяется по таблице значений (приложение 4).

При этом называется точностью оценки. Выражение средняя ошибка выборки или средняя ошибка репрезентативности.

2. Доверительный интервал для математического ожидания (а), если среднее квадратическое отклонение неизвестно, имеет вид

, (3)

где s – исправленное (несмещенное) среднее квадратическое отклонение,

t – определяется по таблице Стьюдента при числе степеней свободы и (приложение 6).

3. Доверительный интервал для оценки среднего квадратического отклонения σ нормального распределения

, (4)

где – определяется по таблице значений (приложение 6).

4. Интервальная оценка (с надежностью ) неизвестной вероятности р биноминального распределения имеет вид

, (5)

где - относительная частота;

n – общее число испытаний;

m – число появлений события в n испытаниях.







Дата добавления: 2014-11-10; просмотров: 777. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия