Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СПОСОБЫ ЗАДАНИЯ МНОЖЕСТВ. ОТНОШЕНИЯ МЕЖДУ МНОЖЕСТВАМИ





Множество считают заданным, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. Существует несколько способов задания множеств.

1) Задание множества с помощью словесного описания. Например,
А – множество натуральных чисел, меньших 6.

2) Задание множеств перечислением элементов, сводящееся к последовательному выписыванию, пересчету всех элементов данного множества. Этим способом могут быть заданы конечные множества, а также те бесконечные множества, элементы которых можно перенумеровать натуральными числами. Например: А= {1, 2, 3, 4, 5, 6}, N = {1, 2, 3,..., п,...}, Р – множество всех простых чисел, Р = {2, 3, 5, 7,..., p,...}.

3) Задание множества с помощью характеристического свойства элементов множества.

Этот способ заключается в том, что если хотят задать множество А, то:

а) указывают хорошо известное множество М, подмножеством которого является множество А;

б) указывают свойство Р, которым обладают те и только те элементы множества М, которые входят в А. При этом множество А записывают в виде: А = {х/х Î М, Р(х)}, где символ Р(х) заменяет слова: «элемент х обладает свойством Р». Например, А – множество натуральных чисел, меньших 6 можно задать так: А = {х/х Î N, х < 6}.

 

_______________________________________________________________

Определение 1. Множества А и В называются равными, если они состоят из одних и тех же элементов. В этом случае пишут, А=В.

_________________________________________________________________________________________

 

Например: А = {12, 22, З2, 42В = { } равны, А = В, т.к. оба множества состоят из чисел 1, 4, 9, 16.

______________________________________________________________

Определение 2. Множество В называют подмножеством множества А, если каждый элемент множества В является одновременно и элементом множества А. В этом случае пишут В Ì А.

__________________________________________________________________________

 

Согласно данному определению подмножества каждое множество является подмножеством самого себя: А Ì А. Кроме того, считают, что пустое множество есть подмножество любого множества А: Æ Ì А.

Определение 3. Если А Ì В и А ¹ В, то А называют собственным подмножеством множества В

_________________________________________________________________________________________

Например, множество А = {п, т, р} имеет восемь подмножеств: {т}, { n }, {р}, {т, р}, {т, п}, {п, р}, { n, т, р} и Æ.

Из определений 1 и 2, очевидно, что если В Ì А и А Ì В, то А = В. Из этого утверждения вытекает один из способов доказательства равенства двух множеств: если доказано, что любой элемент из В является элементом из А и, в свою очередь, любой элемент из А является элементом В, то делают вывод А= В.

Кроме того, если А Ì В и В Ì С, то А Ì С. Действительно, если, каждый элемент множества А принадлежит В, а каждый элемент множества В является, в свою очередь, элементом С, то каждый элемент из А принадлежит множеству С.

Чтобы наглядно изображать множества и отношения между ними, рисуют геометрические фигуры, которые находятся между собой в этих отношениях. Например, если мы хотим наглядно изобразить, что множество А является собственным подмножеством В, то рисуем эти множества так, как показано на рисунке 1. Если же надо показать, что множества А и В не имеют общих элементов, то их изображаем так, как показано на рисунке 2. Такие изображения множеств кругами называют диаграммами Эйлера-Венна.

 

 

 

Рис. 1 Рис. 2 Рис. 3.

 

Диаграмма, показанная на рисунке 3, делает очевидным утверждение: если А Ì В и ВÌ С, то А Ì С.

____________________________________________________________

Определение 4. Для данных множеств А, В С,... универсальным множеством называют каждое множество И, такое, что А Ì И, В Ì И, С Ì И,...

______________________________________________________________________________________

Каждое множество является универсальным множеством для любой системы своих подмножеств.

Например, если А – множество студентов первого курса некоторого института, В – множество студенток в этом же институте, С – множество спортсменов этого же института, то в качестве универсального множества И можно взять множество всех студентов данного института, тогда А Ì И, В Ì И, С Ì И.







Дата добавления: 2014-11-10; просмотров: 1513. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2026 год . (0.016 сек.) русская версия | украинская версия