Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. 1. Проверить, является ли одно из множеств А и В подмножеством другого





1. Проверить, является ли одно из множеств А и В подмножеством
другого.

А = { х/х Î N, х 4 }; В= { х/х Î N, х 2 }.

2. Определить отношения между множествами, изобразить множества с помощью кругов Эйлера:

А = { х/х Î N, х 9}; В = { х/х Î N, х 3}; С = { х/х Î N, х 6}.

Решение.

1) Можно записать:

А = {4, 8, 12, 16,...}, В= {2, 4, 8, 10, 12, 14, 16,...}.

Докажем, что А Ì В. Согласно определению подмножества надо доказать, что любой элемент множества А принадлежит множеству В. Пусть а Î А, следовательно, а – натуральное и а 4, а это значит всегда а 2, поэтому а Î В. Множество В не является подмножеством А, так как из того что b 2 не всегда следует, что b 4.

Пример: 6: 2, но 6 не: 4.

2) Надо выяснить, какое из множеств будет подмножеством другого, или какие из них совпадают.

Можно записать:

А ={9, 18, 27, 36,...};

В= {0, 3, 6, 9, 12, 15, 18, 21, 24, 27,...};

С= {6, 12, 18, 24,...}.

Любой элемент множества А принадлежит и множеству В, т.к. любое натуральное число, кратное 9, кратно 3, А Ì В.

Любой элемент из множества С принадлежит и множеству В, т.к. любое натуральное число, кратное 6, будет кратно 3, С Ì В.

Множества А и С имеют общие элементы, например 18, но и каждое из них имеет элементы, не принадлежащие другому. 9 Î А, но 9 Ï С; 12 Î С, но 12 Ï А. Круги для множеств А и С пересекаются, но оба они внутри круга для множества В (рис. 6).

Рис. 6







Дата добавления: 2014-11-10; просмотров: 1714. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия