Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Иммунобиосенсоры





Биосенсоры находят все более широкое применение в клинической диагностике для определения важнейших параметров организма человека (глюкозы, холестерина, ионов натрия, калия и кальция и др.); в пищевой и пивной промышленности для контроля качества продуктов питания (измерения температуры, рН, содержания углекислого газа и кислорода, отдельных реагентов и продуктов производства), а также в мониторинге состояния окружающей среды, когда требуется определить содержание тех или иных вредных веществ в воздухе, почве, воде и других средах.

Принципиально биосенсоры состоят из двух преобразователей – биохимического и физического, которые находятся в тесном контакте между собой. Биохимический преобразователь состоит из биораспознающего элемента, который способен реагировать на присутствие определяемого компонента и изменение его содержания. В качестве биораспознающих реагентов широко используются ферменты, антитела, антигены, клетки, ткани, микроорганизмы в иммобилизованном состоянии. Физический преобразователь – трансдьюсер – преобразует первичный сигнал, возникающий в результате реакции биочувствительного элемента с определяемым компонентом, в электрический или световой сигнал, который затем регистрируется с помощью светочувствительного или электронного устройства.

 

 

Рис. 25.Принципиальная схема биосенсора

Для повышения избирательности на входном устройстве перед биочувствительным слоем помещают полупроницаемые мембраны, через которые определяемое вещество диффундирует в биочувствительный слой, взаимодействует с ним, в результате чего формируется аналитический сигнал на компонент.

Иммунобиосенсоры – аналитические устройства, использующие антитела для «узнавания» определенных молекул и выдающие информацию об их присутствии и количестве в виде электрического сигнала. Антитела – наиболее универсальные биореагенты, которые могут обеспечить необходимую селективность. Кроме того, в настоящее время антитела можно получить практически к любому веществу (антигену).

Биосенсоры с антителами в качестве распознающего элемента имеют следующие достоинства:

- исключительная селективность;

- очень высокая чувствительность;

- прочное связывание с антигеном.

К недостаткам работы био- и иммуносенсоров можно отнести то, что они не позволяют, как правило, определять несколько соединений одновременно.

Часто определение анализируемого вещества (антигена) проводят с помощью конкурентного иммуноанализа с применением электрохимического трансдьюсера (например, йодид-селективного электрода). На поверхности электрода адсорбирована желатиновая мембрана с иммобилизованными в ней антителами против определяемого антигена. Электрод помещают в раствор, содержащий как свободный антиген, так и его конъюгат (антиген, меченый ферментом). Меченый и свободный антиген конкурируют за связывание с антителами, причем чем меньше концентрация свободного антигена, тем больше меченого антигена свяжется с антителами, и наоборот, чем больше концентрация анализируемого антигена, тем меньше меченого антигена свяжется с мембраной на поверхности электрода. При добавлении в раствор перекиси водорода и йодид-ионов в качестве субстратов пероксидазы в мембране электрода протекает ферментативная реакция:

 

,

 

в ходе которой происходит окисление йодид-ионов с образованием йода. При этом возникающий на йодид-селективном электроде потенциал пропорционален количеству связанного фермента (меченого антигена), а значит, обратно пропорционален логарифму концентрации анализируемого антигена.

 

 

Количественную оценку концентрации антигена в пробе определяют, сравнивая результаты с калибровочной кривой зависимости электродного потенциала от концентрации стандартного раствора антигена (рис. 26).

 

Рис. 26. Калибровочная кривая, отражающая зависимость

электродного потенциала от концентрации антигена.

 








Дата добавления: 2014-11-10; просмотров: 787. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия