Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 1. Функции





 

Понятие о множествах. Действительные числа и числовые множества. Постоянные и переменные величины. Функции и способы их задания. Область определения функции. Четные, нечетные, монотонные и ограниченные функции. Сложная функция. Понятие элементарной функции. Основные элементарные функции и их графики. Неявные функции. ([1 или 5, § 5.1 – 5.5, 5.7]; [2 или 6, гл. 5], или [3, §5.1 – 5.5, 5.7], или [4, §1.1 – 1.5, 1.7]).

Прежде всего полезно ознакомиться с некоторыми логическими символами и кванторами, чтобы использовать их в дальнейшем для сокращения записей ([1, или 5, или 3, § 5.1, 6.1]).

Изучение темы следует начать с основных понятий теории множеств ([1 или 5, или 3, § 5.1]). Далее нужно четко усвоить важнейшее понятие математического анализа – функции, уметь находить область ее определения, знать способы задания функции: аналитический, графический, табличный, словесный.

В нашем курсе рассматриваются в основном элементарные функции. Студент должен уяснить определение элементарной функции ([1, или 5, или 3, § 5.5]), четко знать свойства и строить графики следующих основных элементарных функций: y = C (постоянная), y = xn (степенная),

y = ax (показательная), y = log ax (логарифмическая). Необходимо усвоить понятие сложной функции (функции от функции).

Построение графика четной (нечетной) функции можно значительно упростить, если учесть, что графики четных функций симметричны относительно оси Оy, а нечетных – относительно начала координат. Одним из характерных свойств функции является монотонность (т.е. ее возрастание или убывание на каком-либо промежутке).

Тема завершается рассмотрением линейной функции и элементов аналитической геометрии на плоскости – простейших уравнений прямой. Этот материал будет использоваться на III курсе при изучении дисциплин «Методы оптимальных решений», «Исследование операций».

Основополагающее значение здесь имеет определение уравнения линии на плоскости как уравнения с двумя переменными x и y, которому удовлетворяют координаты каждой точки этой линии и не удовлетворяют координаты любой точки, не лежащей на ней. Из этого определения следуют два важных для практики положения.

1. Если задано уравнение линии, то можно установить, принадлежит ли ей какая-либо точка плоскости. Для этого достаточно подставить координаты точки в уравнение линии вместо переменных x и y. Если окажется, что они удовлетворяют уравнению, то точка принадлежит линии, в противном случае – не принадлежит.

2. Координаты точки пересечения двух линий, заданных своими уравнениями, удовлетворяют обоим уравнениям. Поэтому для нахождения координат точки пересечения двух линий нужно решить систему, составленную из их уравнений.

Студент должен знать простейшие виды уравнений прямой и уметь пользоваться ими при решении задач. Соответствующий учебный материал приведен в учебнике ([1, или 5, или 3, § 4.2]).

Обратите особое внимание на нахождение уравнений прямых, параллельной и перпендикулярной данной прямой ([1, или 5, или 3, пример 4.5].







Дата добавления: 2014-11-10; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия