Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 7. Неопределенный интеграл





 

Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла (с доказательством). Таблица основных интегралов. Интегрирование методом разложения, замены переменной и по частям. Понятие о «неберущихся» интегралах ([1 или 5, § 10.1 – 10.5, 10.8]; [2 или 6, § 10.1 – 10.3, 10.5], или [3, § 10.1 – 10.6, 10.9 – 10.11], или [4, §6.1 – 6.6, 6.9 – 6.11]).

Следует обратить внимание на то, что интегрирование вводится как операция, обратная дифференцированию, но в отличие от последнего приводит к неоднозначному результату: для любой непрерывной функции f (x) имеется бесконечное множество первообразных. Они отличаются друг от друга лишь на постоянное слагаемое.

Доказательства основных свойств неопределенного интеграла получены исходя из определения первообразной. Правильность интегрирования можно проверить дифференцированием; этот прием следует использовать для проверки решения соответствующих примеров в контрольной работе.

Под непосредственным интегрированием понимают нахождение неопределенного интеграла путем преобразования его к табличному с помощью основных правил интегрирования и тождественных преобразований подынтегральной функции.

Обратите внимание на свойство, связанное с линейным преобразованием аргумента ([1 или 5, формула (10.17)] или [3, формула (10.19)]), так как это простейшее из свойств, которое часто применяется при непосредственном интегрировании. Используя его, можно свести к табличным ряд интегралов.

Метод подстановки, или метод замены переменной, – один из основных приемов интегрирования функций. Следует обратить внимание на то, что можно использовать подстановки двух видов:

а) переменная интегрирования x заменяется функцией переменной t:

а

;

б) новая переменная t вводится как функция переменной интегрирования x:

.

Последнюю подстановку удобно применять, если подынтегральное выражение содержит дифференциал (производную) функции с точностью до постоянного множителя.

Если интеграл, полученный после замены переменной, стал «проще» данного (преобразован в табличный или приводящийся к табличному), то цель подстановки достигнута.

После интегрирования функции по переменной t необходимо вернуться к прежней переменной x, выразив t через x по формуле, применявшейся при подстановке.

Примеры различных подстановок даны в ([1, или 5, или 3, § 10.3, 10.6]).

Практическое применение формулы интегрирования по частям ([1 или 5, или 3, § 10.4]), если оно целесообразно, связано с проблемой правильного разбиения подынтегрального выражения на сомножители u и dv. Отметим, что формулу интегрирования по частям, как правило, удобно применять, если подынтегральная функция является произведением многочлена на показательную или логарифмическую функцию ([1 или 5, примеры 10.10 – 10.13]; [3, примеры 10.8, 10.9]).

 

 







Дата добавления: 2014-11-10; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия