Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эмпирических распределений антропометрических признаков от нормальных





Погрешность, возникающая из-за несоответствия эмпирических и теоретических кривых распределения, является следствием наличия в эмпирическом распределении асимметрии и эксцесса. Теоретическая кривая нормального распределения симметрична, и средняя арифметическая величина совпадает с модой и медианой. В то же время любая эмпирическая кривая обнаруживает большую или меньшую асимметрию, и, как правило, средняя арифметическая величина, мода и медиана не совпадают друг с другом.

При асимметричном распределении наблюдается увеличение частот в правой или левой половине кривой. Средняя арифметическая величина в таком распределении перемещается в ту сторону кривой, где находится большая численность. Условно принимают асимметрию положительной при увеличении правой половины кривой и отрицательной, если увеличена левая половина кривой. При положительной асимметрии средняя величина находится справа от наиболее часто встречающегося значения признака — моды, т. е. М > Мо, при отрицательной — слева от нее, т. е. М < Мо. Для антропометрических признаков характерна преимущественно правосторонняя (положительная) асимметрия [2].

Помимо асимметрии, у некоторых кривых можно подметить еще одну особенность: наличие высоко- или плосковершинности, или эксцессивности. Высоковершинность, или эксцессивность, характеризуется значительным увеличением численностей в классе, где находится средняя арифметическая величина, и уменьшением в классах с крайними значениями признака. В этом случае кривая распределения имеет вид острой пирамиды с расширенным основанием. Вершина кривой в этом случае лежит выше вершины нормальной кривой. Такой эксцесс принято считать положительным. В случае, если вершина кривой распределения лежит ниже вершины нормальной кривой, эксцесс отрицательный [2].

Для вычисления степени асимметрии и эксцесса используются центральные моменты третьей и четвертой степеней и начальные моменты первой, второй, третьей и четвертой степеней.

При вычислении центральных моментов отклонения берут от средней арифметической величины, а при вычислении начальных моментов – от условной средней А, принимаемой за 0. Методика оценки отклонений эмпирических распределений антропометрических признаков от нормальных приведена в литературе [2].

2 Вычисление коэффициентов асимметрии (γ 1) и эксцесса (γ 2) способом моментов

Для вычисления коэффициентов асимметрии (γ 1) и эксцесса (γ 2) для вариационного ряда по обхвату груди необходимо заполнить таблицу 10.1. Графы 1–6 заполняют, используя данные вариационного ряда (таблица 8.1, лабораторная работа № 8), далее заполняют графы 7 и 8 таблицы 10.1.

Таблица 10.1 – Вычисление коэффициентов асимметрии γ 1 и эксцесса γ 2 для вариационного ряда по обхвату груди

Границы классовых интервалов, см Средние значения классовых интервалов у, см Частота встречаемости признака, Ру Услов-ные откло-нения, ау Ру· ау Ру· ау2 Ру· ау3 Ру· ау4
               
- - Ру= - Руау= Руау2= Руау3= Руау4=
                     

 

2.1. Определяют начальный момент первой степени по формуле [2]

ν 1 =∑ Руау /п (10.1)

2.2. Определяют начальный момент второй степени по формуле [2]

ν 2 =∑ Руау2 /п (10.2)

2.3. Определяют начальный момент третьей степени по формуле [2]

ν 3 =∑ Руау3 /п (10.3)

2.4. Определяют начальный момент четвертой степени по формуле [2]

ν 4 =∑ Руау4 /п (10.4)

2.5. Вычисляют центральный момент второй степени по формуле [2]

µ2 = ν 2 - ν 12 =s2 (10.5)

2.6. Вычисляют центральный момент третьей степени по формуле [2]

µ3 = ν 3 - 3 ν 2 ν 1 +2 ν 1 3 (10.6)

2.7. Вычисляют центральный момент четвертой степени по формуле [2]

µ4 = ν 4 - 4 ν 3 ν 1 +6 ν 2 ν 21 -3 ν 14 (10.7)

2.8. Вычисляют коэффициент асимметрии (γ 1) по формуле [2]

γ 1 = µ3 / s3 (10.8)

2.9. Вычисляют коэффициент эксцесса (γ 2) по формуле [2]

γ 2 = µ422 – 3 (10.9)

 







Дата добавления: 2014-11-10; просмотров: 816. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия