Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Розв’язання. 8.





Оскільки, , - многочлен першого степеня, і , тому

= .

 

Приклад 2. Розв’язати рівняння .

Розв’язання. Це ЛНДР ІІ порядку зі сталими коефіцієнтами. Відомо, що .

1. Знайдемо загальний роз’язок відповідного ЛОДР: .

Корені цього рівняння і . Отже,

.

2. Знайдемо частинний розв’язок лінійного неоднорідного рівняння. У правій частинні

даного рівняння функція має вигляд: ,

Многочлен має нульовий степінь, отже .

(), тому = .

Знайдемо похідні: = , = .

Підставимо вирази , , у вихідне рівняння.

Одержимо: . , , .

Отже, = .

3. Загальний розв’язок вихідного диференціального рівняння має вигляд:

= , , .

 

Приклад 3. Розв’язати задачу Коші: .

Розв’язання. Це ЛНДР ІІ порядку зі сталими коефіцієнтами. Відомо, що .

1. Знайдемо загальний роз’язок відповідного ЛОДР: .

Складемо =характеристичне рівняння Корені цього рівняння і

. Отже, .

2. Знайдемо частинний розв’язок лінійного неоднорідного рівняння. У правій частинні

даного рівняння функція має вигляд: , .

Многочлен першого степеня, отже .

Тому = .

Знайдемо похідні: = , = .

Підставимо вирази , , у вихідне рівняння.

Одержимо: . .

Прирівнюючи коефіцієнти при однакових степенях х, отримаємо:

Звідси, .

Отже, = .

3. Загальний розв’язок вихідного диференціального рівняння має вигляд:

= .

4. Знайдемо похідну загального розв’язку вихідного рівняння:

= (.

Підставляючи в і початкові умови , , одержимо систему

рівнянь для визначення сталих і :

Звідси, і .

Підставляючи ці значення і в , знаходимо частинний розв’язок 9розв’язок

задачі Коші): = .

 

Завдання для самостійної роботи

 

Знайти загальні розв’язки диференціальних рівнянь. Для зазначених диференціальних рівнянь розв’язати задачу Коші.

 

Рівняння Відповідь

1.

2.

3.

4.

5.

 

6.

 

7.

8.

9.

 

10.

11.

12.

13.

 

14.

 

15.

 

 

16.

 

17. .

 

Практичне заняття № 34

ТЕМА Різницеві лінійні рівняння.

Під час підготовки до цього заняття треба вивчити матеріал, викладений на сторінках 517 – 530 [10] та відповісти на питання.

КОНТРОЛЬНІ ЗАПИТАННЯ

 

1. Дайте означення лінійного різницевого рівняння n – го порядку.

2. Що називається розв'язком різницевого рівняння?

3. Запишіть загальний вигляд однорідного різницевого рівняння.

4. Який його розв’язок називають загальним?

5. Яке рівняння називається мультіплікаторним?

6. Як знайти загальний розв’язок неоднорідного різницевого рівняння?

 

РОЗВ’ЯЗАТИ ВПРАВИ

 

34.1 Знайти загальний розв’язок різницевих рівнянь:

1) ; 2) ;

3) ; 4) .

34.2 Знайти частинний розв’язок однорідного різницевого рівняння:

1) ;

2) ;

3) .

34.3 Знайти загальний розв’язок неоднорідного різницевого рівняння:

1) ; 2) ;

3) ; 4) ;

5) ; 6) ;

 

Практичне заняття № 35

ТЕМА Застосування диференціальних рівнянь в економіці.

Розв’яжіть задачі економічного змісту

 

35.1 Кількість населення м. Одеси на 1 січня 2011 р. склало 1, 007 млн. чол.. і річний приріст за 2010 рік склав 0, 32%. Знайти населення м. Одеси у 2020 році, якщо тенденція зростання залишиться такою ж.

 

35.2 На 1 січня 2011 року в Україні було 45, 8 млн. чол.. і річний приріст за 2010 рік

склав -0, 44%. Яка кількість населення буде у 2015 році, якщо тенденція спаду

залишиться такою ж?

 

35.3 Повні витрати у є функцією об’єму виробництва х і при виробництві однієї одиниці продукції дорівнюють 2. Знайти функцію повних витрат, якщо граничні витрати для усіх значень х дорівнюють середнім витратам.

 

35.4 Повні витрати у є функцією об’єму виробництва х і при виробництві однієї одиниці продукції дорівнюють 1. Еластичність функції повних витрат дорівнює середнім витратам. Знайти функцію повних витрат.

 

35.5 Ціна деякого товару складає 30 умовних одиниць, а через t тижнів y(t). Визначити закон зміни ціни рівноваги товару, якщо попит визначається рівнянням , а пропозиція - . (Ціна рівноваги – ціна, коли попит дорівнює пропозиції).

 

35.6 Швидкість зростання кількості населення пропорційна кількості населення. Знайти закон зростання населення держави, в який у 2010 році було 50 млн. чол. Яка кількість населення буде у 2020 році?

 

35.7 Відносно попиту кількість одиниць х певного товару вартістю р за кожну одиницю відомо, що еластичність попиту, яка визначається формулою , постійна і дорівнює – 0, 5. Знайти функцію попиту на цей товар.

 

35.8 Знайти функцію попиту, якщо відомо значення ціні р в деякій точці х та еластичність має вигляд:

 

а) , і ;

б) , і .







Дата добавления: 2014-11-10; просмотров: 823. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия