Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

РОЗДІЛ 8. РЯДИ





Практичне заняття № 36

ТЕМА Основні поняття. Збіжність рядів. Властивості збіжних рядів.

Гармонічний ряд.

Під час підготовки до цього заняття треба вивчити матеріал, викладений на сторінках 534-538 [5 ], 335 – 340 [1], 343 –348 [10] та відповісти на питання.

КОНТРОЛЬНІ ЗАПИТАННЯ

 

1. Як визначають числовий ряд, його частинну суму, суму ряду?

2. Який ряд називають збіжним, розбіжним?

3. Як математично записати необхідну умову збіжності числового ряду?

4. Який ряд називають рядом геометричної прогресії? Коли цей ряд збігається та

чому дорівнює його сума?

5. Який вигляд має і коли збігається узагальнений гармонічний ряд?

6. Сформулюйте основні властивості збіжних рядів.

 

РОЗВ’ЯЗАТИ ВПРАВИ

 

36.1 Знайти загальний член ряду:

 

1) ; 2) ; 3) ;

4) ; 5) ; 6) .

 

36.2 Записати перших п’ять членів ряду та перевірити необхідну умову збіжн6ості:

 

1) ; 2) ; 3) ; 4) ;

 

5) ; 6) ; 7) ; 8) .

 

36.3 Знайти суму ряду:

 

1) ; 2) ; 3) ;

4) ; 5) .

 

 

Практичне заняття № 37

ТЕМА Дослідження збіжності додатних числових рядів.

Під час підготовки до цього заняття треба вивчити матеріал, викладений на сторінках 538-542 [5], 341-343 [ 1], 346 –355 [10] та відповісти на питання.

КОНТРОЛЬНІ ЗАПИТАННЯ

 

1. Сформулюйте ознаку порівняння.

2. Сформулюйте ознаку Д’Аламбера.

3. Сформулюйте радикальну ознаку Коші.

4. Сформулюйте інтегральну ознаку Коші.

 

РОЗВ’ЯЗАТИ ВПРАВИ

 

37.1 Застосовуючи ознаку порівняння, дослідити на збіжність ряд:

 

1) ;

 

2) ;

3) ; 4) ;

5) ; 6) ; 7) ; 8) .

 

37.2 Дослідити збіжність ряду за ознакою Д’Аламбера:

 

1) ; 2) ; 3) ; 4) ;

 

5) ; 6) ; 7) ; 8) .

 

37.3 Дослідити збіжність ряду з використанням радикальної ознаки Кощі:

 

1) ; 2) ;

3) ; 4) ; 5) .

 

 

37.4 Дослідити збіжність ряду за інтегральною ознакою Коші:

 

1) ; 2) ; 3) ; 4) ;

 

5) ; 6) ; 7) ; 8) .

 

 

Практичне заняття № 38

ТЕМА Дослідження збіжності знакозмінних рядів.

Під час підготовки до цього заняття треба вивчити матеріал, викладений на сторінках 543-545 [5], 344-346 [1], 356-360 [10] та відповісти на питання.

КОНТРОЛЬНІ ЗАПИТАННЯ

 

1. Як визначають знакозмінний ряд?

2. Коли застосовується і як формулюється ознака збіжності Лейбніца?

3. Дайте означення абсолютної та умовної збіжності знакозмінного ряду.

 

РОЗВ’ЯЗАТИ ВПРАВИ

 

38.1 Дослідити збіжність знакозмінних рядів:

1) ;

2) ;

3) ;

4) .

 

38.2 Дослідити на абсолютну збіжність:

 

1) ; 2) ; 3) ; 4) ;

5) ;

6) ;

7) ; 8) ; 9) ;

10) ; 11) ; 12) .

 

 

Практичне заняття № 39

ТЕМА Знаходження області збіжності степеневого ряду.

Під час підготовки до цього заняття треба вивчити матеріал, викладений на сторінках 553-558 [5], 349 – 351 [1], 366-370 [ 10] та відповісти на питання.

КОНТРОЛЬНІ ЗАПИТАННЯ

 

1. Дайте означення степеневого ряду.

2. Який інтервал називають інтервалом збіжності степеневого ряду?

3. Як визначають та знаходять радіус збіжності степеневого ряду?

 

РОЗВ’ЯЗАТИ ВПРАВИ

 

39.1 Знайти область збіжності степеневого ряду:

 

1) ; 2) ; 3) ;

4) ; 5) ; 6) ; 7) ;

 

8) ; 9) ; 10) ; 11) .

 

Практичне заняття № 40

ТЕМА Розклад функцій в ряд Маклорена. Наближене обчислення значення функцій.

Під час підготовки до цього заняття треба вивчити матеріал, викладений на сторінках 558-562 [5], 352-358 [1], 371-374 [10] та відповісти на питання.

КОНТРОЛЬНІ ЗАПИТАННЯ

 

1. Який вигляд мають розклади функцій у ряд Тейлора та ряд Маклорена?.

2. Який порядок дій доцільно застосувати при знаходженні наближеного значення

функції, визначеного інтегралу?

3. Як можна оцінити похибку наближеного обчислення значення функції або

визначеного інтегралу?

 

РОЗВ’ЯЗАТИ ВПРАВИ

 

40.1 Знайти розклад в степеневий ряд функцій:

 

1) ; 2) ; 3) ;

4) ; 5) ; 6) .

 

40.2 Знайти , користуючись розкладом функції в ряд

Маклорена (обмежуючись першими трьома членами).

 

40.3 Знайти , користуючись розкладом функції в ряд Маклорена

(обмежуючись першими трьома членами).

 

40.4 Знайти , користуючись розкладом функції в ряд Маклорена

(обмежуючись першими трьома членами).

 

40.5 Знайти , користуючись розкладом функції в ряд Маклорена

(обмежуючись першими трьома членами).

40.6 Знайти наближене значення інтегралу з точністю до 0, 01.

40.7 Знайти наближене значення інтегралу з точністю до 0, 001.

40.8

ЗВИЧАЙНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ

 

Стандартний вигляд Назва рівняння Метод розв’язування
  З відокремлюваними змінними   Після розподілення змінних інтегрувати
    Однорідне першого порядку Використовуючи допоміжну функцію звести до рівняння з відокремлюваними змінними та інтегрувати
        Лінійне першого порядку Зводиться до двох рівнянь з відокремлюваними змінними за допомогою функції , де u i v - допоміжні функції
      Рівняння Бернуллі Звести до лінійного рівняння першого порядку відносно допоміжної функції , знайти його загальний розв’язок, а потім повернутись до функції у
        Другого порядку Підстановка , тоді . Приходимо до рівняння першого порядку з відокремлюваними змінними або  
    Лінійне однорідне диференціальне рівняння другого порядку із сталими коефіцієнтами Скласти характеристичне рівняння та знайти його корені. Якщо: 1) - дійсні і різні, то загальний розв’язок має вигляд 2) , то 3) корені комплексно спряжені , , то  
        Лінійне неоднорідне рівняння другого порядку Загальний розв’язок має вигляд , де - загальний розв’язок відповідного ЛОДР, - довільний частинний розв’язок ЛНДР. Якщо , то , де (далі див. стор. 76)  

 

 







Дата добавления: 2014-11-10; просмотров: 647. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия