Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 4. Используя метод исключения переменных и геометрические построения, найти решение задачи Линейного Программирования:





Используя метод исключения переменных и геометрические построения, найти решение задачи Линейного Программирования:

 

 

Решение

 

1.5 Из третьего ограничения можно выразить :

 

.

C учетом условия имеем:

 

Замечание: В данном случае из третьего ограничения можно выразить любую из переменных , или .

 

 

1.6 Подставим выражение для в первое ограничение :

1.7 Подставим выражение для во второе ограничение :

1.8 Подставим выражение для в целевую функцию :

Свободным членом на данном этапе можно пренебречь, тогда перейдем к целевой функции вида:

1.9 Таким образом, после применения метода исключения переменных от исходной задачи перейдем к задаче вида:

Данная задача может быть решена на плоскости графическим методом решения задач линейного программирования.

 

1.10 Необходимо на плоскости построить прямые, соответствующие заданным неравенствам.

Прямая, соответствующая неравенству проходит через точки

и

Прямая, соответствующая неравенству проходит через точки

и

Прямая, соответствующая неравенству проходит через точки

и

 

1.11 Строим на плоскости прямые, соответствующие данным прямым.

1.12 Определяем ОДЗ (Область допустимых значений) данной системы неравенств. ОДЗ- это многогранник, ограниченный заданной системой неравенств, каждая точка которого удовлетворяет всем неравенствам (условиям).

На данном графике также обозначены области, удовлетворяющие условиям .

Таким образом, ОДЗ, удовлетворяющая всем условиям следующая:

1.13 Строим вектор целевой функции . Для этого необходимо построить линию уровня целевой функции, где , а затем определить в какую сторону целевая функция возрастает.

Линия уровня целевой функции проходит через точки и .

 

Чтобы определить градиент возрастания целевой функции можно взять две точки выше и ниже линии уровня целевой функции , подставить данные значения в уравнение целевой функции и посмотреть, в какой точке значение больше нуля.

В нашем случае можно взять две точки: и :

Таким образом целевая функция возрастает вверх (см. рисунок), а вниз соответственно убывает.

1.14 Мысленно передвигая параллельно линию уровня целевой функции вверх, нужно определить крайнюю точку ОДЗ, которую пересекают линии уровня целевой функции.

 

Для данной ОДЗ крайней точкой, в которой заданная целевая функция достигает максимума, является точка D. Из графика следует, что координаты точки D .

Подставив координаты точки D в выражение для нахождения , получаем:

Далее определяем максимум исходной целевой функции в точке D:

 

Ответ:







Дата добавления: 2014-11-10; просмотров: 1591. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия