Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 4. Используя метод исключения переменных и геометрические построения, найти решение задачи Линейного Программирования:





Используя метод исключения переменных и геометрические построения, найти решение задачи Линейного Программирования:

 

 

Решение

 

1.5 Из третьего ограничения можно выразить :

 

.

C учетом условия имеем:

 

Замечание: В данном случае из третьего ограничения можно выразить любую из переменных , или .

 

 

1.6 Подставим выражение для в первое ограничение :

1.7 Подставим выражение для во второе ограничение :

1.8 Подставим выражение для в целевую функцию :

Свободным членом на данном этапе можно пренебречь, тогда перейдем к целевой функции вида:

1.9 Таким образом, после применения метода исключения переменных от исходной задачи перейдем к задаче вида:

Данная задача может быть решена на плоскости графическим методом решения задач линейного программирования.

 

1.10 Необходимо на плоскости построить прямые, соответствующие заданным неравенствам.

Прямая, соответствующая неравенству проходит через точки

и

Прямая, соответствующая неравенству проходит через точки

и

Прямая, соответствующая неравенству проходит через точки

и

 

1.11 Строим на плоскости прямые, соответствующие данным прямым.

1.12 Определяем ОДЗ (Область допустимых значений) данной системы неравенств. ОДЗ- это многогранник, ограниченный заданной системой неравенств, каждая точка которого удовлетворяет всем неравенствам (условиям).

На данном графике также обозначены области, удовлетворяющие условиям .

Таким образом, ОДЗ, удовлетворяющая всем условиям следующая:

1.13 Строим вектор целевой функции . Для этого необходимо построить линию уровня целевой функции, где , а затем определить в какую сторону целевая функция возрастает.

Линия уровня целевой функции проходит через точки и .

 

Чтобы определить градиент возрастания целевой функции можно взять две точки выше и ниже линии уровня целевой функции , подставить данные значения в уравнение целевой функции и посмотреть, в какой точке значение больше нуля.

В нашем случае можно взять две точки: и :

Таким образом целевая функция возрастает вверх (см. рисунок), а вниз соответственно убывает.

1.14 Мысленно передвигая параллельно линию уровня целевой функции вверх, нужно определить крайнюю точку ОДЗ, которую пересекают линии уровня целевой функции.

 

Для данной ОДЗ крайней точкой, в которой заданная целевая функция достигает максимума, является точка D. Из графика следует, что координаты точки D .

Подставив координаты точки D в выражение для нахождения , получаем:

Далее определяем максимум исходной целевой функции в точке D:

 

Ответ:







Дата добавления: 2014-11-10; просмотров: 1591. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия