Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 3. Используя геометрические построения, найти решение задачи Линейного Программирования





Используя геометрические построения, найти решение задачи Линейного Программирования

 

 

Решение

1.4 Необходимо на плоскости построить прямые, соответствующие заданным неравенствам.

Прямая, соответствующая неравенству проходит через точки

и

Прямая, соответствующая неравенству проходит через точки

и

Прямая, соответствующая неравенству проходит через точки

и

 

1.5 Строим на плоскости прямые, соответствующие данным прямым.

1.6 Определяем ОДЗ (Область допустимых значений) данной системы неравенств. ОДЗ- это многогранник, ограниченный заданной системой неравенств, каждая точка которого удовлетворяет всем неравенствам (условиям). В данном случае ОДЗ – полупространство.

 

На данном графике также обозначены области, удовлетворяющие условиям .

Таким образом, ОДЗ, удовлетворяющая всем условиям следующая:

 

1.7 Строим вектор целевой функции Z. Для этого необходимо построить линию уровня целевой функции, где Z=0, а затем определить в какую сторону целевая функция возрастает.

 

Линия уровня целевой функции проходит через точки и

 

Чтобы определить градиент возрастания целевой функции можно взять две точки выше и ниже линии уровня целевой функции , подставить данные значения в уравнение целевой функции и посмотреть, в какой точке значение больше нуля.

В нашем случае можно взять две точки: и :

Таким образом целевая функция возрастает вверх (см. рисунок), а вниз соответственно убывает.

 

1.8 Мысленно передвигая параллельно линию уровня целевой функции вверх, нужно определить крайнюю точку ОДЗ, которую пересекают линии уровня целевой функции.

 

Для данной ОДЗ крайней точкой, в которой заданная целевая функция достигает минимума, является точка D. Из графика следует, что координаты точки D

Подставив координаты точки D в , получаем значение минимума целевой функции на заданном ОДЗ:

Ответ:

 


 

 







Дата добавления: 2014-11-10; просмотров: 994. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия