Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача 6. Используя метод исключения переменных и геометрические построения, найти решение задачи Линейного Программирования:





Используя метод исключения переменных и геометрические построения, найти решение задачи Линейного Программирования:

 

 

Решение

 

1.7 Из третьего ограничения можно выразить :

 

 

1.8 Подставим выражение для в первое ограничение :

1.9 Подставим выражение для во второе ограничение :

 

1.10 Таким образом, после применения метода исключения переменных от исходной задачи перейдем к задаче вида:

Данная задача может быть решена на плоскости графическим методом решения задач линейного программирования.

 

1.11 Необходимо на плоскости построить прямые, соответствующие заданным неравенствам.

Прямая, соответствующая неравенству , проходит через точку параллельно оси

Прямая, соответствующая неравенству проходит через точки

и

 

1.12 Строим на плоскости прямые, соответствующие данным прямым.

 

1.13 Определяем ОДЗ (Область допустимых значений) данной системы неравенств. ОДЗ- это многогранник, ограниченный заданной системой неравенств, каждая точка которого удовлетворяет всем неравенствам (условиям).

Таким образом, ОДЗ, удовлетворяющая всем условиям следующая:

 

 

1.14 Строим вектор целевой функции . Для этого необходимо построить линию уровня целевой функции, где , а затем определить в какую сторону целевая функция возрастает.

Линия уровня целевой функции проходит через точки и .

 

Чтобы определить градиент возрастания целевой функции можно взять две точки выше и ниже линии уровня целевой функции , подставить данные значения в уравнение целевой функции и посмотреть, в какой точке значение больше нуля.

В нашем случае можно взять две точки: и :

Таким образом, целевая функция возрастает вниз (см. рисунок), а вверх соответственно убывает.

 

1.15 Мысленно передвигая параллельно линию уровня целевой функции вверх, нужно определить крайнюю точку ОДЗ, которую пересекают линии уровня целевой функции.

 

Для данной ОДЗ целевая функция достигает минимума в точке С, а максимума в точке A.

Определим координаты точек A и С.

 

Координаты точки A можно определить из графика: . Тогда, подставив координаты точки А в , получаем значение максимума целевой функции для заданной системы неравенств:

 

Точка С образована пересечением двух прямых

Решив данную систему уравнений, получаем координаты точки С . Подставив координаты точки С в , получаем значение максимума целевой функции для заданной системы неравенств:

 

Ответ: ,








Дата добавления: 2014-11-10; просмотров: 1545. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия