Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметризация модели





 

Статистической оценкой параметра называется его приближенное значение, полученное на основе выборочных данных. Для получения точечных оценок параметров уравнения парной линейной регрессии применяют метод наименьших квадратов (МНК). В соответствии сМНК минимизируется сумма квадратов разностей между фактическими и расчетными значениями зависимой переменной. Оценки неизвестных параметров находятся из системы нормальных уравнений, полученной методом дифференциального исчисления. Для расчета интервальных оценок (доверительных интервалов) параметров регрессии определяются предельные ошибки для каждого показателя: , где – стандартные ошибки коэффициентов регрессии, – стандартная ошибка регрессии, которая служит мерой разброса зависимой переменной вокруг линии регрессии, – критическая точка распределения Стьюдента для заданного уровня значимости и числа степеней свободы . Доверительные интервалы имеют вид: для ( ), для ( ). Доверительный интервал с вероятностью 0, 95 содержит истинное значение свободного члена уравнения регрессии. Поэтому любое значение из этого интервала может служить оценкой параметра. Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.

 

В результате проведения регрессионного анализа на листе Регрессия в третьей таблице получены точечные и интервальные оценки неизвестных параметров.

 

Таблица 1.6 – Статистика коэффициентов регрессии

  Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение -73, 25 16, 03 -4, 57 0, 000238 -106, 93 -39, 56
ВВП 0, 26 0, 01 25, 93 0, 000000 0, 24 0, 28
    tкр 2, 1009      

 

Точечная оценка параметра равна -73, 25. Интервальная оценка равна (-106, 93; -39, 56), где центр интервала равен точечной оценке, концы интервалов получены прибавлением и вычитанием произведения стандартной ошибки коэффициента на критическое значение t-статистики. Доверительный интервал с вероятностью 0, 95 содержит истинное значение свободного члена уравнения регрессии. Поэтому любое значение из этого интервала может служить оценкой параметра .

Точечная оценка параметра равна 0, 24. Интервальная оценка равна (0, 24; 0, 28). Доверительный интервал с вероятностью 0, 95 содержит истинное значение коэффициента при переменной x уравнения регрессии. Поэтому любое значение из этого интервала может служить оценкой параметра .

Таким образом, уравнение регрессии имеет вид

y = -73, 25 + 0, 24 x.

Случайная переменная отсутствует в уравнении, так как коэффициенты регрессии имеют случайный характер, т. е. неучтенные факторы повлияли на их значение при применении МНК.







Дата добавления: 2014-11-10; просмотров: 973. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия