Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Верификация модели. 4.1. Общее качество уравнения.Оценим общее качество модели по коэффициенту (индексу) детерминации и нормированному индексу детерминации (см





4.1. Общее качество уравнения. Оценим общее качество модели по коэффициенту (индексу) детерминации и нормированному индексу детерминации (см. в п 4.1 анализа темы 1).

Проанализируем показатели в таблице Регрессионная статистика листа «Регрессия» (таблица 2.5).

Таблица 2.5 – Регрессионная статистика

Регрессионная статистика
Множественный R 0, 998228
R-квадрат 0, 99646
Нормированный R-квадрат 0, 996043
Стандартная ошибка 3, 597326
Наблюдения  

 

Коэффициент множественной детерминации R-квадрат равен 0, 9964. Так как он близок к 1, то уравнение имеет высокое качество. Этот факт подтверждает также нормированный индекс множественной детерминации, равный 0, 996.

В таблице Дисперсионный анализ листа «Регрессия» рассчитаны наблюдаемое и критическое значения критерия Фишера (таблица 2.6).

Таблица 2.6 – Дисперсионный анализ

Дисперсионный анализ      
  df SS MS F Значимость F
Регрессия   61917, 59 30958, 8 2392, 348568 1, 47E-21
Остаток   219, 9928 12, 94076    
Итого   62137, 59      
      Fкр 3, 591530569  

 

Так как наблюдаемое значение Fнабл =2392, 35 > Fкр = 3, 59, то R-квадрат значим, что еще раз подтверждает высокое качество построенного уравнения линейной множественной регрессии.

 

4.2. Нормальность распределения остатков. Проанализируем нормальность распределения остатков по: 1) гистограмме остатков, 2) числовым характеристикам асимметрии и эксцессу, 3) критерию Пирсона.

 

Теоретический материал приводится в п. 4.2 анализа темы 1.

1) Построим гистограмму остатков. Соединим середины верхних сторон прямоугольников гистограммы и получим полигон распределения, по которому визуально можно предположить закон распределения.

Рисунок 2.2 – Гистограмма

 

Так как ломаная линия на рис. 2.2 близка к кривой нормального распределения, заданной уравнением (сравните с рис. 1.2), то остатки распределены по нормальному закону. Следовательно, по визуальному анализу гистограммы можно предположить нормальность распределения остатков.

2) Асимметричность равна -0, 36 (левосторонняя асимметричность эмпирической кривой относительно теоретической), эксцесс равен 0, 1 («островершинность» эмпирической кривой), то есть характеристики плотности распределения асимметричность и эксцесс незначительно отличаются от нуля, поэтому можно считать распределение нормальным.

3) Подтвердим нормальность распределения с помощью критерия Пирсона.

На листе «Регрессия»найдены наблюдаемое и критическое значения статистики хи-квадрат (таблица 2.7).

Таблица 2.7 – Проверка критерия Пирсона

хи-кв набл 3, 158859
хи-кв кр 7, 814728

 

Наблюдаемое значение, равное 3, 16, меньше хи-квадрат критического, равного 7, 81, поэтому остатки распределеныпо нормальному закону.

4.3. Значимость коэффициентов регрессии. Проверим значимость коэффициентов регрессии.

 

Проверка значимости коэффициентов регрессии описана в теме 1.

 

Значимость коэффициентов регрессии оценивается с помощью –статистики, значения которой получены на листе «Регрессия» (см. таблицу 2.4).

Наблюдаемое значение статистики для коэффициента tнабл = 115, 59 (оно равно отношению точечной оценки коэффициента к его стандартной ошибке). Критическое значение tкр = 2, 1. Так как |tнабл| = 115, 59 > tкр = 2, 1, то коэффициент значим.

Аналогично, для коэффициента имеем tнабл = 5, 26, tкр = 2, 1, Так как |tнабл| =5, 26 > tкр = 2, 1, поэтому коэффициент значим. Для коэффициента имеем |tнабл| =41, 85 > tкр = 2, 1, поэтому коэффициент значим.

Значимость коэффициентов регрессии подтверждает выдвинутое на этапе спецификации предположение о линейной форме зависимости факторов.

 







Дата добавления: 2014-11-10; просмотров: 644. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия