Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зависимость между деформациями и напряжениями при плоском и объемном напряженных состояниях (обобщенный закон Гука)





 

Определим деформации и в направлениях главных напряжений при плоском напряженном состоянии (рис. 2.9). Для этого используем закон Гука для одноосного напряженного состояния.

 

 


Рис. 2.9.


От действия одного напряжения относительное удлинение по вертикали равно

(2.15)

 

и одновременно в горизонтальном направлении относительное сужение равно

(2.16)

От действия одного только имели бы в горизонтальном направлении удлинение и в вертикальном направлении – сужение : ( – коэффициент поперечной деформации).

Суммируя деформации, получаем

(2.17)

 

Эти формулы выражают обобщенный закон Гука для плоского напряженного состояния.

Если известны деформации и то, решая уравнения - (2.17) относительно напряжений и получим следующие формулы:

(2.18)

 

Аналогично, для объемного (пространственного) напряженного состояния, когда все три главных напряжения отличны от нуля, получим

(2.19)


Уравнения (2.19) представляют собой обобщенный закон Гука для объемного напряженного состояния. Деформации в направлении главных напряжений называются главными деформациями.

Зная , можно вычислить изменение объема при деформации. Возьмем кубик 1´ 1´ 1 см. Объем его до деформации =1 см3. Объем после деформации (произведениями как величинами малыми по сравнению с самими ε, пренебрегаем).

Относительное изменение объема:

(2.20)

 

Подставив значения , получим:

(2.21)

 

Из формулы (2.20) следует, что коэффициент Пуассона не может быть больше 0, 5.

 







Дата добавления: 2014-11-10; просмотров: 1783. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия