Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление напряжений при равноускоренном движении




Во многих случаях ускорения, с которыми перемещаются детали машин, известны. Динамические напряжения в этих случаях вычисляются без затруднений.

Рассмотрим несколько примеров.

 

 


 

 


Рис. 10.1. Рис. 10.2.

 

Рис. 10.1. Рис. 10.2.

 

Пример 1. Груз весом G поднимают вверх с ускорением (рис. 10.1). Определить напряжение в канате, пренебрегая его весом.

Решение. Прикладываем к грузу силу инерции, равную и направленную вниз. Применим метод сечений. Делаем разрез п - п и отбрасываем верхнюю часть каната. Усилие в канате обозначаем Nd, так как напряжения при центральном растяжении равномерно распределены по сечению, то можем принять, что где - искомое динамическое напряжение в канате.

Проецируя все силы, в том числе и силы инерции, на вертикальную ось, получаем

(10.1)

(10.2)

напряжение при статическом действии груза. 1 - динамический коэффициент.

Таким образом, динамические напряжения во многих случаях могут быть выражены через статические напряжения и динамический коэффициент. Это особенно удобно, так как динамический коэффициент часто приходится определять опытным путем.

Пример 2. Стержень, вес 1 м длины которого равен q, поднимают; с помощью двух нитей, привязанных к его концам (рис. 10.2). Движение поступательное с ускорением а. Определить напряжения в стержне.

Решение. Прикладываем к каждому элементу стержня длиной, равной единице, силу инерции . Видим, что эта задача эквивалентна задаче о простой балке, нагруженной равномерно распределенной нагрузкой интенсивностью .

Наибольший изгибающий момент будет в сечении посередине балки:

(10.3)

 

где - изгибающий момент от статической равномерно распределенной нагрузки интенсивностью q; - динамический коэффициент.

Наибольшее динамическое напряжение определяется по обычной формуле изгиба

(10.4)

 


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2014-11-10; просмотров: 1865. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.017 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7