Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пределы применимости формулы Эйлера





Формулой Эйлера не всегда можно пользоваться. При ее выводе мы пользовались дифференциальным уравнением упругой линии, вывод которого основан на законе Гука. Закон же Гука, как известно, справедлив до тех пор, пока напряжения не превосходят предела пропорциональности. Чтобы установить пределы применимости формулы Эйлера, определим критическое напряжение , т. е. напряжение, возникающее в поперечном сечении стержня при действии критической нагрузки:

(9.8)

 

где А - площадь поперечного сечения стержня.

Но - наименьший радиус инерции поперечного сечения стержня. Поэтому формулу (9.8) можно записать в виде

 

 

Величина характеризует влияние размеров стержня и способа закрепления концов; она называется гибкостью стержня и обозначается λ. Гибкость - величина безразмерная.

Таким образом, обозначая получаем

 

 

Чтобы можно было пользоваться формулой Эйлера, необходимо удовлетворить следующему условию:

 

(9.9)

где - предел пропорциональности материала стержня.

Записывая формулу (9.9) относительно гибкости, получаем условие применимости формулы Эйлера в виде

 

(9.10)

 

Например, для стали Ст.З =200 МПа и

 

 

Таким образом, для стержней из малоуглеродистой стали формула Эйлера применима, если их гибкость больше 100.

Аналогичным образом получим условия применимости формулы Эйлера для чугуна λ ³ 80. Для средне и высокоуглеродистых, а также для легированных сталей формула Эйлера применима и при гибкости, меньшей указанной. Так для стержней из хромомолибденовой стали формула Эйлера применима при λ ³ 70.







Дата добавления: 2014-11-10; просмотров: 2541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия