Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пределы применимости формулы Эйлера





Формулой Эйлера не всегда можно пользоваться. При ее выводе мы пользовались дифференциальным уравнением упругой линии, вывод которого основан на законе Гука. Закон же Гука, как известно, справедлив до тех пор, пока напряжения не превосходят предела пропорциональности. Чтобы установить пределы применимости формулы Эйлера, определим критическое напряжение , т. е. напряжение, возникающее в поперечном сечении стержня при действии критической нагрузки:

(9.8)

 

где А - площадь поперечного сечения стержня.

Но - наименьший радиус инерции поперечного сечения стержня. Поэтому формулу (9.8) можно записать в виде

 

 

Величина характеризует влияние размеров стержня и способа закрепления концов; она называется гибкостью стержня и обозначается λ. Гибкость - величина безразмерная.

Таким образом, обозначая получаем

 

 

Чтобы можно было пользоваться формулой Эйлера, необходимо удовлетворить следующему условию:

 

(9.9)

где - предел пропорциональности материала стержня.

Записывая формулу (9.9) относительно гибкости, получаем условие применимости формулы Эйлера в виде

 

(9.10)

 

Например, для стали Ст.З =200 МПа и

 

 

Таким образом, для стержней из малоуглеродистой стали формула Эйлера применима, если их гибкость больше 100.

Аналогичным образом получим условия применимости формулы Эйлера для чугуна λ ³ 80. Для средне и высокоуглеродистых, а также для легированных сталей формула Эйлера применима и при гибкости, меньшей указанной. Так для стержней из хромомолибденовой стали формула Эйлера применима при λ ³ 70.







Дата добавления: 2014-11-10; просмотров: 2541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия