Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Эйлера для критической силы. Рассмотрим, сжатый стержень в критическом состоянии, когда сжимающая сила достигла критического значения





 

Рассмотрим, сжатый стержень в критическом состоянии, когда сжимающая сила достигла критического значения, т. е. примем, что стержень слегка изогнут (рис. 9.3). Если моменты инерции относительно двух главных центральных осей поперечного сечения не равны между собой, то продольный изгиб произойдет в плоскости наименьшей жесткости, т. е. поперечные сечения стержня будут поворачиваться вокруг той оси, относительно которой момент инерции имеет минимальное значение. В этом легко убедиться, сжимая гибкую линейку.

Для изучения продольного изгиба и определения критической силы используем приближенное дифференциальное уравнение изогнутой оси балки

 

(9.2)

 

Изгибающий момент относительно центра тяжести сечения в изогнутом состоянии

(9.3)

 

 

 


Рис. 9.3.

 

 

Рис. 9.3.

 

Знак минус берется потому, что стержень изгибается выпуклостью вверх, а прогиб положителен. Если бы стержень изогнулся выпуклостью вниз, то момент был бы положительным, но прогибы были бы отрицательными, и мы снова получили бы тот же результат.

Обозначая

 

получаем

(9.4)

 

Это линейное дифференциальное уравнение второго порядка. Его общее решение, как известно из математики, имеет вид

(9.5)

 

Здесь С и D - постоянные интегрирования, для определения которых используем известные условия на концах стержня: 1) при z = 0, = 0;

2) при

Из первого условия получим С =0. Следовательно, стержень изгибается по синусоиде Из второго условия получим Это соотношение справедливо в двух случаях.

1-й случай. D =0. Но если С =0 и D =0, то, как следует из уравнения (9.5), прогибы стержня равны нулю, что противоречит исходной предпосылке.

2-й случай, sinα =0. Это условие выполняется, когда принимает следующий бесконечный ряд значений: , где n - любое целое число. Отсюда , а так как , тo . Таким образом, получается бесчисленное множество значений критических сил, соответствующих различным формам искривления стержня.

С практической точки зрения интерес представляет лишь наименьшее значение критической силы, при котором происходит потеря устойчивости стержня.

Первый корень n =0 не дает решения задачи. При n =1 получаем наименьшее значение критической силы:

(9.6)







Дата добавления: 2014-11-10; просмотров: 1086. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия