Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Эйлера для критической силы. Рассмотрим, сжатый стержень в критическом состоянии, когда сжимающая сила достигла критического значения





 

Рассмотрим, сжатый стержень в критическом состоянии, когда сжимающая сила достигла критического значения, т. е. примем, что стержень слегка изогнут (рис. 9.3). Если моменты инерции относительно двух главных центральных осей поперечного сечения не равны между собой, то продольный изгиб произойдет в плоскости наименьшей жесткости, т. е. поперечные сечения стержня будут поворачиваться вокруг той оси, относительно которой момент инерции имеет минимальное значение. В этом легко убедиться, сжимая гибкую линейку.

Для изучения продольного изгиба и определения критической силы используем приближенное дифференциальное уравнение изогнутой оси балки

 

(9.2)

 

Изгибающий момент относительно центра тяжести сечения в изогнутом состоянии

(9.3)

 

 

 


Рис. 9.3.

 

 

Рис. 9.3.

 

Знак минус берется потому, что стержень изгибается выпуклостью вверх, а прогиб положителен. Если бы стержень изогнулся выпуклостью вниз, то момент был бы положительным, но прогибы были бы отрицательными, и мы снова получили бы тот же результат.

Обозначая

 

получаем

(9.4)

 

Это линейное дифференциальное уравнение второго порядка. Его общее решение, как известно из математики, имеет вид

(9.5)

 

Здесь С и D - постоянные интегрирования, для определения которых используем известные условия на концах стержня: 1) при z = 0, = 0;

2) при

Из первого условия получим С =0. Следовательно, стержень изгибается по синусоиде Из второго условия получим Это соотношение справедливо в двух случаях.

1-й случай. D =0. Но если С =0 и D =0, то, как следует из уравнения (9.5), прогибы стержня равны нулю, что противоречит исходной предпосылке.

2-й случай, sinα =0. Это условие выполняется, когда принимает следующий бесконечный ряд значений: , где n - любое целое число. Отсюда , а так как , тo . Таким образом, получается бесчисленное множество значений критических сил, соответствующих различным формам искривления стержня.

С практической точки зрения интерес представляет лишь наименьшее значение критической силы, при котором происходит потеря устойчивости стержня.

Первый корень n =0 не дает решения задачи. При n =1 получаем наименьшее значение критической силы:

(9.6)







Дата добавления: 2014-11-10; просмотров: 1086. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия