Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Эйлера для критической силы. Рассмотрим, сжатый стержень в критическом состоянии, когда сжимающая сила достигла критического значения





 

Рассмотрим, сжатый стержень в критическом состоянии, когда сжимающая сила достигла критического значения, т. е. примем, что стержень слегка изогнут (рис. 9.3). Если моменты инерции относительно двух главных центральных осей поперечного сечения не равны между собой, то продольный изгиб произойдет в плоскости наименьшей жесткости, т. е. поперечные сечения стержня будут поворачиваться вокруг той оси, относительно которой момент инерции имеет минимальное значение. В этом легко убедиться, сжимая гибкую линейку.

Для изучения продольного изгиба и определения критической силы используем приближенное дифференциальное уравнение изогнутой оси балки

 

(9.2)

 

Изгибающий момент относительно центра тяжести сечения в изогнутом состоянии

(9.3)

 

 

 


Рис. 9.3.

 

 

Рис. 9.3.

 

Знак минус берется потому, что стержень изгибается выпуклостью вверх, а прогиб положителен. Если бы стержень изогнулся выпуклостью вниз, то момент был бы положительным, но прогибы были бы отрицательными, и мы снова получили бы тот же результат.

Обозначая

 

получаем

(9.4)

 

Это линейное дифференциальное уравнение второго порядка. Его общее решение, как известно из математики, имеет вид

(9.5)

 

Здесь С и D - постоянные интегрирования, для определения которых используем известные условия на концах стержня: 1) при z = 0, = 0;

2) при

Из первого условия получим С =0. Следовательно, стержень изгибается по синусоиде Из второго условия получим Это соотношение справедливо в двух случаях.

1-й случай. D =0. Но если С =0 и D =0, то, как следует из уравнения (9.5), прогибы стержня равны нулю, что противоречит исходной предпосылке.

2-й случай, sinα =0. Это условие выполняется, когда принимает следующий бесконечный ряд значений: , где n - любое целое число. Отсюда , а так как , тo . Таким образом, получается бесчисленное множество значений критических сил, соответствующих различным формам искривления стержня.

С практической точки зрения интерес представляет лишь наименьшее значение критической силы, при котором происходит потеря устойчивости стержня.

Первый корень n =0 не дает решения задачи. При n =1 получаем наименьшее значение критической силы:

(9.6)







Дата добавления: 2014-11-10; просмотров: 1086. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия