Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условные средние





Условной средней называют среднее арифметическое наблюдаемых значений , соответствующих .

Например: при величина приняла значения ; ; . Условная средняя определяется выражением .

Условным средним называется среднее арифметическое наблюдаемых значений Х, соответствующих .

Условным математическим ожиданием дискретной случайной величины при Х=х (х - определенное возможное значение Х) называют произведение возможных значений на их условные вероятности:

Условное математическое ожидание есть функция от х ; - называют функцией регрессии на Х.

Аналогично определяется условное математическое ожидание . - функция регрессии.

Условное математическое ожидание есть функция от х, следовательно, его оценка, т.е. условное среднее - тоже функция от х, обозначив эту функцию через , получим уравнение .

Это уравнение называют выборочным уравнением выборочной регрессии на Х; функцию называют выборочной регрессией на Х, а её график – выборочной линией регрессии на Х.

Аналогично уравнение называют уравнением регрессии Х на .

При определенной корреляционной зависимости решаются две основные задачи:

Первая задача теории корреляции – устанавливает форму корреляционной зависимости, т.е. вид функции регрессии: линейная или нелинейная.

Вторая задача теории корреляции – оценить тесноту (силу) корреляционной связи (она оценивается по величине рассеяния у вокруг условного среднего - чем меньше расстояние, тем сильнее корреляционная зависимость).

Уравнение линейной корреляции можно записать в виде уравнения прямой линии:

.

Угловой коэффициент прямой линии регрессии на называют выборочным коэффициентом регрессии на и обозначают через . Он является оценкой коэффициента регрессии на :

.

- коэффициент корреляции и .

Выборочные уравнения прямой линии среднеквадратичной регрессии по несгруппированным данным имеют вид:

,

где ; .

Пример 2.14. Найти выборочное уравнение прямой линии регрессии на по данным наблюдений:

2, 0 2, 3 2, 7 3, 1 3, 5 4, 0 4, 6 5, 0 5, 5 6, 3
1, 0 1, 1 1, 3 1, 5 1, 6 1, 9 2, 1 2, 6 2, 8 3, 4

 

Для определения параметров выборочного уравнения составим таблицу:

2, 0 1, 0 4, 0 2, 00
2, 3 2, 0 5, 29 2, 53
2, 7 2, 7 7, 29 3, 51
3, 1 3, 1 9, 61 4, 65
3, 5 3, 5 12, 25 5, 6
4, 0 4, 0 16, 0 7, 6
4, 6 4, 6 21, 16 9, 66
5, 0 5, 0 25, 00 13, 00
5, 5 5, 5 30, 25 15, 40
6, 3 6, 3 39, 69 21, 42

Задания для самостоятельной работы:

1. На основании полученных измерений величин X и Y:

x          
y          

Найти линейную регрессию Y на X и выборочный коэффициент корреляции.

2. На основании полученных по результатам измерений значений величин X и Y:

x            
y            

 

Найти линейную регрессию X и Y и выборочный коэффициент корреляции.

3. В магазине постельных принадлежностей были проверены в течение пяти дней подсчеты числа покупок простыней X и подушек Y:

x          
y          

Найти выборочное уравнение линейной регрессии Y на X и выборочный коэффициент корреляции.

2.5.2. Корреляционная таблица

При большом числе наблюдений одного и того же значения х может встретиться раз, одно и то же значение y - раз, одна и та же пара чисел (x, y) может наблюдаться . Поэтому данные наблюдений группируют, т.е. подсчитывают частоты , , . Все сгруппированные данные записывают в виде таблицы, которую называют корреляционной.







Дата добавления: 2014-11-10; просмотров: 6416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия