Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения вероятностей случайной величины





Функцией распределения называют функцию F(x), определяющую для каждого значения х вероятность того, что случайная величина X примет значение, меньше х, т.е. .

F(x) – называют «интегральной функцией распределения».

Функция обладает следующими свойствами:

1. – значение функции распределения принадлежит отрезку [0, 1].

2. Функция распределения есть неубывающая функция своего аргумента:

если x2> x1, то F(x2)> F(x1)

Следствие 1.

Следствие 2. – вероятность того, что непрерывная случайная величина примет одно отдельно взятое значение.

3. Если все возможные значения случайной величины Х принадлежат интервалу (a, b), то при F(x)= 0, при F(x)= 1.

Пример 1.23. Дискретная случайная величина Х задана законом распределения:

X      
p 0, 3 0, 1 0, 6

 

Найти функцию распределения и начертить ее график.

Решение: если , то F(x)= 0;

если , то F(x)= 0, 3;

если , то F(x)= 0, 4 – на этом интервале х принимает значение 1 с вероятностью 0, 3 и значение 4 с вероятностью 0, 1. Поскольку эти события несовместны, то по теореме сложения вероятностей 0, 3 + 0, 1 = 0, 4

Если x> 8, то F(x)= 1.

Итак, функция распределения аналитически может быть записана так:

График функции приведен на рис. 3.

 

Рис. 3.

Пример 1.24. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (0, 1).

Решение: Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале .

Положив a= 0, b= 1, получим:

Задания для самостоятельной работы:

1. Дискретная случайная величина задана законом распределения:

X        
p 0, 2 0, 1 0, 4 0, 3

Найти функцию распределения и построить ее график.

2. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (2, 3).

3. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (1; 1, 5).







Дата добавления: 2014-11-10; просмотров: 2863. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия