Сила Лоренца
Сила Ампера, діюча на відрізок провідника довжиною Δ l із струмом I, що знаходиться в магнітному полі B F = IBΔ l sin α, може бути виражена через сили, діючі на окремі носії заряду. FЛ = qvB sin α;. (3.58) Цю силу називають силою Лоренца. Кут α в цьому виразі дорівнює куту між швидкістю і вектором магнітної індукції. Напрям сили Лоренца, діючої на позитивно заряджену частинку, так само, як і напрям сили Ампера, може бути знайдений за правилом лівої руки. Взаємне розташування векторів v, B і F для позитивно зарядженої частинки показаний на рисунку 3.42. Рисунок 3.42. Взаємне розташування векторів v, B і F. Модуль сили Лоренца чисельно дорівнює площі паралелограма, побудованого на векторах v і B помноженої на заряд q. При русі зарядженої частинки в магнітному полі сила Лоренца роботи не здійснює. Тому модуль вектора швидкості при русі частки не змінюється.
. (3.59)
Рисунок 3.43 Рисунок 3.44. Сила Лоренца в цьому випадку грає роль доцентрової сили (рис. 3.43). Якщо швидкість частинки v має складову v║ уздовж напряму магнітного поля, то така частинка рухатиметься в однорідному магнітному полі по спіралі. При цьому радіус спіралі R залежить від модуля перпендикулярної магнітному полю складової v┴ вектора v а крок спіралі ρ - від модуля подовжньої складової v|| (рис. 3.44).
. (3.60)
Цей вираз показує, що для заряджених частинок заданої маси m період обертання не залежить від швидкості v і радіуса траєкторії R.
(3.61) Циклотронна частота не залежить від швидкості (отже, і від кінетичної енергії) частинки (3.61). Ця особливість використовується в циклотронах - прискорювачах елементарних частинок. Принципова схема циклотрона приведена на рисунку 3.45. Між полюсами сильного електромагніту поміщається вакуумна камера, в якій знаходяться два електроди у вигляді порожнистих металевих напівциліндрів (дуантів).
Рисунок 3.45. Рисунок 3.46. До дуантів прикладена змінна електрична напруга, частота якої дорівнює циклотронній частоті. Заряджені частинки випускаються в центрі вакуумної камери і прискорюються електричним полем в проміжку між дуантами. Усередині дуантів частинки рухаються під дією сили Лоренца по півколах, радіус яких росте у міру збільшення енергії частинок. Кожного разу, коли частинка пролітає через проміжок між дуантами, вона прискорюється електричним полем. Таким чином, в циклотроні, як і в усіх інших прискорювачах, заряджена частинка прискорюється електричним полем, а утримується на траєкторії магнітним полем. Циклотрони дозволяють прискорювати протони до енергії близько 20 МеВ. Однорідні магнітні поля використовуються в багатьох приладах і, зокрема, в мас-спектрометрах - пристроях, за допомогою яких можна вимірювати маси заряджених частинок, - іонів або ядер різних атомів. Мас-спектрометри використовуються для розподілу ізотопів, тобто ядер атомів з однаковим зарядом, але різними масами (наприклад, 20Ne і 22Ne). Простий мас-спектрометр показаний на рисунку 3.46. Іони, що вилітають з джерела S, формуються у вузький пучок. Потім вони потрапляють в селектор швидкостей, в якому частинки рухаються в схрещених однорідних електричному і магнітному полях. Електричне поле створюється між пластинами плоского конденсатора, магнітне поле - в проміжку між полюсами електромагніту. Початкова швидкість заряджених часток спрямована перпендикулярно векторам Е і В. На частинку, що рухається в схрещених електричному і магнітному полях, діють електрична сила qE і магнітна сила Лоренца. За умови E = vB ці сили точно урівноважують одна одну. Якщо ця умова виконується, частинка рухатиметься рівномірно і прямолінійно і, пролетівши через конденсатор, пройде через отвір в екрані. При заданих значеннях електричного і магнітного полів селектор виділить частинки, що рухаються із швидкістю v = E / B. Далі частинки з одним і тим же значенням швидкості потрапляють в камеру мас-спектрометра, в якій створено однорідне магнітне поле індукції B'. Частинки рухаються в камері в площині, перпендикулярній магнітному полю, під дією сили Лоренца. Траєкторії часток є колами радіусів R = mv/qB'. Вимірюючи радіуси траєкторій при відомих значеннях v і B' можна визначити відношення q/m. У разі ізотопів (q1 = q2) мас-спектрометр дозволяє розділити частинки з різними масами. Сучасні мас-спектрометри дозволяють вимірювати маси заряджених часток з точністю вище 10-4. Траєкторія зарядженої частинки, яка рухається в магнітному полі, як би навивається на лінії магнітної індукції. Це явище використовується для магнітної термоізоляції високотемпературної плазми, тобто повністю іонізованого газу при температурі близько 106 K. Речовину в такому стані отримують в установках типу " Токамак" при вивченні керованих термоядерних реакцій. Плазма не повинна стикатися із стінками камери. Термоізоляція досягається шляхом створення магнітного поля спеціальної конфігурації. В якості прикладу на рисунку 3.47 зображена траєкторія руху зарядженої частки в магнітній " пляшці" (чи пастці). Рисунок 3.47. Аналогічне явище відбувається в магнітному полі Землі, яке є захистом для усього живого від потоків заряджених частинок з космічного простору. Швидкі заряджені частинки з космосу (головним чином від Сонця) " захоплюються" магнітним полем Землі і утворюють так звані радіаційні пояси (рис. 3.48). У цих поясах частинки, як в магнітних пастках, переміщаються туди і назад по спіралеподібних траєкторіях між північним і південним магнітними полюсами. Час руху між полюсами рівний кілька долей секунди. Лише у полярних областях деяка частина частинок проникає у верхні шари атмосфери, викликаючи полярні сяйва. Південний магнітний полюс Землі знаходиться поблизу північного географічного полюса (на північному заході Гренландії). А північний магнітний - поблизу південного географічного полюса.
Рисунок 3.48. Приклад розв’язку задачі: Заряджена частинка, що має швидкість v=2·106 м/с, влетіла в однорідне магнітне поле з індукцією B=0, 52 Тл. Знайти відношення Q/m заряду частки до її маси, якщо частинка в полі описала дугу кола радіусом R=4 см По цьому відношенню визначити, яка це частинка. На рухому заряджену частинку в магнітному полі діє сила Лоренца. FЛ = qvB sin α = qvB, оскільки sin α =1.
Порівнюючи значення з табличними визначаємо, що частка є протоном. Питання і завдання 1. Що таке магнітне поле? Які характеристики магнітного поля ви знаєте? 2. Що таке лінії індукція магнітного поля? 3. Що таке сила Ампера і чому вона дорівнює? Як знайти напрям сили Ампера? 4. Як визначити одиницю сили струму 1 А? 5. Які ви знаєте методи розрахунку індукції магнітного поля? 6. Сформулюйте теорему Біо-Савара-Лапласа. 7. Що таке циркуляція вектора індукції магнітного поля? Сформулюйте теорему про циркуляцію вектора індукції магнітного поля. 8. Яка сила діє на провідник із струмом в магнітному полі? Як розрахувати цю силу і від чого вона залежить? 9. Яка сила діє на частку, що рухається, в магнітному полі? Як розрахувати цю силу і від чого вона залежить? 10. Використовуючи теорему Біо-Савара-Лапласа розрахуйте індукцію магнітного поля в центрі кругового струму радіусом 10 см. Сила струму в провіднику становить 2 А. (1, 256·10-5 Тл). 11. У однорідному магнітному полі з індукцією 0, 01 Тл знаходиться провідник завдовжки 12. По дроту, зігнутому у вигляді квадрата із стороною, рівною 60 см, тече струм 3 А. визначити індукцію магнітного поля в центрі квадрата.(1, 12·10-5 Тл). 13. По прямому нескінченно довгому дроту тече струм 15 А. Користуючись теоремою про циркуляцію вектора В (індукції магнітного поля) визначити магнітну індукцію в точці, розташованій на відстані 15 см від провідника.(2·10-5 Тл). 14. Яка індукція магнітного поля, в якому на провідник із струмом 25 А діє сила 60 мН? Поле і струм взаємно перпендикулярні. Довжина провідника 5 см. (0, 048 Тл). 15. Протон, прискорений різницею потенціалів 0, 5 кВ, влітаючи в однорідне магнітне поле з індукцією 0, 1 Тл, рухається по колу. Визначити радіус цього кола.(0, 32 м).
|