Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторная диаграмма. Сложение гармонических колебаний одного направления и одинаковой частоты





 

Возьмем ось . Из начала оси (точка О) отложим вектор под углом к оси (рис. 5.6). Если этот вектор вращать вокруг точки с угловой скоростью , то тогда проекция вектора на ось будет изменяться по гармоническому закону

, .

Такое построение называют векторной диаграммой. Гармоническое колебание на векторной диаграмме совершает проекция вектора на ось . Причем циклическая частота колебаний будет равна по модулю угловой скорости вращения вектора .

Пусть тело (м.т.) одновременно участвует в двух гармонических колебаниях одинаковой частоты, происходящих в одном направлении, причем амплитуды и начальные фазы колебаний различны (, ):

, . (5.24)

Результирующее движение, равное сумме колебаний и , будет также гармоническим колебанием той же циклической частоты

Рис. 5.6

 

.

Необходимо найти амплитуду и начальную фазу результирующего колебания. Это можно сделать с помощью векторной диаграммы. Для этого проведем из точки О векторы с амплитудами А1 и А2 под углами и к оси и приведем их во вращение с угловой скоростью (рис. 5.7).

Проекции векторов и на ось при этом совершают гармонические колебания в соответствии с уравнениями (5.24). Результирующее колебание будет изображаться проекцией на ось вектора , полученного из векторов и по правилу параллелограмма. Из построения на Рис. 5.7 следует, что квадрат амплитуды вектора можно найти по теореме косинусов из треугольника Δ ОА2А:

,

. (5.25)

Из треугольников Δ ОА1В и Δ ОАС для начальной фазы результирующего колебания можно найти следующее выражение:

. (5.26)

 

Рассмотрим частные случаи сложения колебаний.

1. , (5.27)

т.е. если разность фаз складываемых колебаний равна четному числу π, то колебания максимально усиливают друг друга.

2. , (5.28)

т.е., если разность фаз складываемых колебаний равна нечетному числу π, то колебания максимально ослабляют друг друга.

3. .

На рис. 5.8 приведены результаты сложения гармонических колебаний в рассмотренных выше случаях 1, 2 и 3, при условии, что =0 и А 1> А 2.

Рис. 5.7

Полученные условия максимального усиления (5.27) и ослабления (5.28) колебаний при сложении колебаний одного направления и одинаковой частоты

будут использованы при изучении интерференции когерентных волн.

 







Дата добавления: 2014-11-10; просмотров: 1969. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия