Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторная диаграмма. Сложение гармонических колебаний одного направления и одинаковой частоты





 

Возьмем ось . Из начала оси (точка О) отложим вектор под углом к оси (рис. 5.6). Если этот вектор вращать вокруг точки с угловой скоростью , то тогда проекция вектора на ось будет изменяться по гармоническому закону

, .

Такое построение называют векторной диаграммой. Гармоническое колебание на векторной диаграмме совершает проекция вектора на ось . Причем циклическая частота колебаний будет равна по модулю угловой скорости вращения вектора .

Пусть тело (м.т.) одновременно участвует в двух гармонических колебаниях одинаковой частоты, происходящих в одном направлении, причем амплитуды и начальные фазы колебаний различны (, ):

, . (5.24)

Результирующее движение, равное сумме колебаний и , будет также гармоническим колебанием той же циклической частоты

Рис. 5.6

 

.

Необходимо найти амплитуду и начальную фазу результирующего колебания. Это можно сделать с помощью векторной диаграммы. Для этого проведем из точки О векторы с амплитудами А1 и А2 под углами и к оси и приведем их во вращение с угловой скоростью (рис. 5.7).

Проекции векторов и на ось при этом совершают гармонические колебания в соответствии с уравнениями (5.24). Результирующее колебание будет изображаться проекцией на ось вектора , полученного из векторов и по правилу параллелограмма. Из построения на Рис. 5.7 следует, что квадрат амплитуды вектора можно найти по теореме косинусов из треугольника Δ ОА2А:

,

. (5.25)

Из треугольников Δ ОА1В и Δ ОАС для начальной фазы результирующего колебания можно найти следующее выражение:

. (5.26)

 

Рассмотрим частные случаи сложения колебаний.

1. , (5.27)

т.е. если разность фаз складываемых колебаний равна четному числу π, то колебания максимально усиливают друг друга.

2. , (5.28)

т.е., если разность фаз складываемых колебаний равна нечетному числу π, то колебания максимально ослабляют друг друга.

3. .

На рис. 5.8 приведены результаты сложения гармонических колебаний в рассмотренных выше случаях 1, 2 и 3, при условии, что =0 и А 1> А 2.

Рис. 5.7

Полученные условия максимального усиления (5.27) и ослабления (5.28) колебаний при сложении колебаний одного направления и одинаковой частоты

будут использованы при изучении интерференции когерентных волн.

 







Дата добавления: 2014-11-10; просмотров: 1969. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия