Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение векторов. Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними





Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Обозначается скалярное произведение символом × или (, ).

, (10)

где j – угол между и .

Свойства скалярного произведения:

1. (, ) = (, );

2. ( + ) = (, ) + (, );

3. (λ , ) = λ (, );

4. (, ) = = 2.

5. Если векторы и перпендикулярны, то (, ) = 0 (необходимое и достаточное условие).

Если векторы и заданы своими координатами:
= (х 1, у 1, z 1), = (х 2, у 2, z 2), то их скалярное произведение вычисляется по формуле

(, ) = х 1 х 2 + у 1 у 2 + z 1 z 2. (11)

Косинус угла φ между векторами и определяется по формуле:

(12)

Если векторы заданы координатами, то необходимое и достаточное условие перпендикулярности векторов примет вид:

x 1 × x 2 + y 1 × y 2 + z 1 × z 2 = 0, (13)

Скалярное произведение векторов и можно записать через проекцию одного вектора на другой по следующей формуле:

(, ) = × = . (14)

Отсюда легко находится проекция одного вектора на другой:

; . (15)

Пример 5. Векторы и образуют угол . Зная,
что , , вычислить скалярное произведение вектора
(2 + 3 ) на вектор ().

Решение. Используя формулу (10) и свойства скалярного произведения, имеем:

((2 + 3 ), ()) = (2 , ) + (3 , ) – (2 , ) – (3 , ) = = 2 2 + 3(, ) – 2 (, ) – 3 2 = 2 2 + (, ) – 3 2;

2 = 52 = 25;

2= 22 = 4;

(, ) = 5 × 2 × cos = 5.

Следовательно, ((2 + 3 ), ()) = 2 × 25 + 5 – 3 × 4 = 43.

Пример 6. Найти угол между векторами = (–1, 2, 4) и
= (2, –1, 3). Вычислить .

Решение. Используем формулу (11). Найдем скалярное произведение векторов и . (, ) = (–1) × 2 + 2 × (–1) + 4 × 3 = 8.

 

Найдем модули и .

;

.

Подставив найденные значения в формулу (12), получим:

, .

Используя формулу (15) и полученные вычисления, имеем .







Дата добавления: 2014-11-10; просмотров: 1101. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия