Студопедия — Решение.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение.






1. = (3 – 4 i) + (–5 +2 i) = (3 – 5) + i (–4 + 2) = –2 – 2 i.

2. = (3 – 4 i) – (–5 – 2 i) = (3 – (–5)) + i (–4 – (–2)) = 8 – 2 i.

3. = (3 – 4 i)(–5 +2 i) = 3× (–5) + (–4 i)× (–5) + 3× 2i + (–4 i)× (2 i) =
= –15 + 20 i + 6 i – 8 i 2 = –7 + 26 i.

4.

.

 

Пример 2. Найти действительную и мнимую части числа:

.

Решение. Будем выполнять преобразования последовательно.

1. (–2 + 4 i)× (3 – i) = –6 + 12 i + 2 i – 4 i 2 = –6 + 14 i + 4 = –2 + 14 i.

2. (–2 – 2 i)2 = (–2)2 + 2× (–2)(–2 i) + (–2 i)2= 4 + 8 i + 4 i 2 = 8 i.

3. .

4. i 18 = i 16 × i 2 = (i4)4 × i 2 = 1 × (–1)= –1.

5. .

Ответ: .


Пример 3. Найти x и y и записать комплексное число z, если

(2 x + 3 i)(–1 + i) – (2 x + iy)(–3 i) = 4 + 2 i.

Решение. Преобразуем левую часть:

(2 x + 3 i)(–1 + i) – (2 x + iy)(–3 i) =

= –2 x + 3 i + 2 xi + 3 i 2 + 6 xi + 3 yi 2 =

= –2 x – 3 i + 2 xi – 3 + 6 xi –3 y =

= (–2 x – 3 y –3) + i (8 x – 3).

Получим: (–2 x – 3 y – 3) + i (8 x – 3) = 4 + 2 i.

Используя равенство комплексных чисел, запишем систему уравнений:

.

 

Пример 4. Решить уравнение z 2 – 2 z + 4 = 0.

Решение. т.к. i 2 = –1, а , имеем , .

 

1.5.3. Тригонометрическая форма комплексного числа

Комплексное число в тригонометрической форме имеет вид

,

где r – модуль комплексного числа z и обозначается | z |,

,

 
 

угол j называется аргументом числа z и обозначается Arg z. Из значений j = arg z выделяется главное значение arg z, удовлетво-ряющее условию .

Пример 5. Представить в тригонометрической форме следующие комплексные числа: z = 3; z = 2.

Решение. Чтобы представить в тригонометрической форме комплекс­ное число, надо:

1) построить точку на комплексной плоскости, соответствующую данному комплексному числу;

2) провести радиус-вектор этой точки;

3) найти модуль комплексного числа z;

4) найти аргумент числа z.

При вычислении аргумента комплексного числа z необходимо учитывать четверть, в которой лежит точка z.

1) Рассмотрим комплексное число z 1 = 1 + i. На комплексной плоскос-ти построим точку М 1 с координатами (1; 1), соответствующую этому числу, проведем радиус-вектор и отметим угол j 1.

 

2) Рассмотрим z 2 = –1 + i.

 

3) Рассмотрим z 3 = –1 – i.

 

4) Рассмотрим z 4 = 1 – i.

5) Рассмотрим z 5 = 3 = 3 + 0 i.

6) Рассмотрим z 6 = – 3 = –3 + 0 i.

.

 

7) Рассмотрим z 7 = 2 i = 0 + 2 i.

.

8) Рассмотрим z8 = – 2 i = 0 – 2 i.

.

 

 

1.5.4. Действия над комплексными числами
в тригонометрической форме

Над комплексными числами в тригонометрической форме удобно выполнять следующие действия: умножение, деление, возведение в степень, извлечение корня.

Пусть комплексные числа заданы в тригонометрической форме:

.

Тогда модуль произведения этих числе равен произведению модулей сомножителей, а аргумент произведения – сумме аргументов сомножителей:

.

Модуль частного равен частному модулей делимого и делителя, а аргумент частного равен разности аргументов делимого и делителя:

Если , то . Эта формула называется формулой Муавра.

Пусть n – целое положительное число, а . Корень n -й степени из комплексного числа z имеет n значений, которые могут быть найдены по формуле:

,

где k = 0, 1, ¼, n – 1. Если k давать n, (n + 1), ¼, значения, то будут повторяться значения корня при k = 0, 1, ¼, n – 1.

 

1.2.5. Показательная форма комплексного числа

По формуле Эйлера . Следовательно, всякое комплексное число можно еще представить в показательной форме. В этом случае оно имеет следующий вид:

.

Пусть комплексные числа заданы в показательной форме:

, .

Тогда:

1) ;

2) ;

3) ;

4) , k = 0, 1, 2 ¼, (n – 1) × V.

 

Пример 6. Комплексные числа z 1 = –2 + 2 i, представить в тригонометрической форме. Найти:

1) 2) 3) (z 1)8; 4) .

Решение. Представим z 1= –2 + 2 i в тригонометрической форме:

 

.

Представим в тригонометрической форме:

 

1) Найдем z = z 1 × z 2.

;

;

;

.

2)

3)

4)

, k = 0, 1, 2.

Получаем три значения корня:

k 1 = 0, ;

k 2 = 1,

k 3 = 2,

Ответ каждого примера можно записать в показательной форме:

1) z 1 × z 2 =

2)

3)

4) .

КОНТРОЛЬНая РАБОТа №2







Дата добавления: 2014-11-10; просмотров: 6625. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2023 год . (0.013 сек.) русская версия | украинская версия