Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Матрицы





Матрицей размера m ´ n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, А, В, С, ¼, а для обозначения элементов матрицы используются строчные буквы с двойной индексацией: аij, где i – номер строки, j – номер столбца.

Кроме круглых скобок, для обозначения матрицы исполь­зуются [ ], || ||.

Матрица размера n ´ n называется квадратной:

.

Главной диагональю квадратной матрицы называется диагональ, составленная из элементов а 11, а 22, ¼, аnn.

Диагональной матрицей называется квадратная матрица, у ко­торой все элементы, не находящиеся на главной диагонали, равны нулю:

.

Единичной матрицей называется диагональная матрица, у которой каждый элемент, находящийся на главной диагонали, равен единице:

.

Нулевой матрицей называется матрица, все элементы которой нули.

Матрица размера m ´ 1 называется матрица столбец.

.

Матрица размера 1 ´ n называется матрица строка.

.

 

1.4.1. Алгебра матриц

1. Две матрицы называются равными, если они одинакового размера и каждый элемент одной матрицы равен соответствующему элементу другой матрицы.

2. Суммой двух матриц А и В одного и того же размера m ´ n будет третья матрица С размера m ´ n, элементы которой равны сумме соответствующих элементов матриц А и В.

3. Произведением матрицы А размера m ´ n на число l будет матрица С того же размера m ´ n, элементы которой равны соответствующим элементам матрицы А, умноженным на число l.

4. Произведением матрицы Аm ´ k × Bk ´ n называется такая матрица Сm´ n, каждый элемент которой сij равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы В.

Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второй.

 

Пример 11. Найти матрицу С = 2А + 3В, если

.

Решение. Чтобы умножить матрицу на число, надо каждый элемент матрицы умножить на это число. Следовательно:

.

Чтобы сложить (вычесть) две матрицы одинаковой размерности, надо сложить (вычесть) их соответствующие элементы.

.

 

Пример 12. Найти матрицу С = АТ + 2 В, если:

.

Решение. Строим матрицу АТ, транспонированную матрице А, для чего в матрице А строки и столбцы поменяем местами.

,

.

 

Пример 13. Найти произведение матрицы А × В и В × А, если
, .

Решение. Матрицы можно перемножить только тогда, когда число столбцов первой матрицы равно числу строк второй матрицы.

У матрицы А три столбца, у матрицы В три строки, следовательно, произведение А × В существует.

Произведение В × А также возможно, т.к. у матрицы В два столбца, а у матрицы А две строки. Произведением матрицы А размера m n на матрицу В размера n p будет матрица размера m p, у которой элемент с номером ij (i = 1, 2, ¼, m, j = 1, 2, ¼, p) равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j столбца матрицы В.

;

А × В В А.

 

Пример 14. Найти значение многочлена f (A) от матрицы А, если

f (x) = 3 x 2 – 4, .

Решение. f (A) = 3 А 2 – 4 Е. Где Е – единичная матрица. Найдем А 2.

;

 

1.4.2. Обратная матрица

Определение 1. Квадратная матрица А называется вырожден­ной, если det A = 0, и невырожденной, если det A ¹ 0.

Определение 2. Матрица А –1 называется обратной для матрицы А, если

А × А –1 = А –1 × А = Е, (8)

где Е –единичная матрица.

 

Теорема. Всякая невырожденная матрица А имеет обратную матрицу вида:

, (9)

где Аij – алгебраические дополнения элемента аij матрицы А.

Правило построения обратной матрицы:

1) Находим det A. Если det A ¹ 0, то матрица А невырожденная и для нее существует обратная. Если det A = 0, то матрица А вырожденная и обратная матрица А –1 не существует.

2) Находим матрицу АТ, транспонированную к матрице А.

3) Заменяем каждый элемент матрицы АТ его алгебраическим дополнением, используя формулу (5).

4) Вычисляем обратную матрицу по формуле (9).

5) Проверяем правильность вычисления обратной матрицы, используя формулу (8).

 

Пример 15. Найти матрицу А –1 обратную матрице А, если

.







Дата добавления: 2014-11-10; просмотров: 1561. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия