Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Экстремумы функции.





Среди стационарных точек выделим экстремальные: функция имеет максимум (минимум) в точке х=а, если вблизи этой точки всем значениям х соответствуют меньшие (большие), чем . По нашему чертежу точка 2 является точкой экстремума, в данном случае - максимума.

Сформулируем необходимое условие экстремума: если функция имеет экстремум в точке х=а, то в этой точке ее производная либо равна 0, либо бесконечна, либо не существует.

Отметим, что необходимое условие экстремума еще не гарантирует присутствие экстремума. Кроме того, оно не дает ответа о типе экстремума - минимуме или максимуме. И, наконец, оно может соблюдаться и не в экстремальных точках, что и показано на рисунке.

Таким образом, чтобы установить наличие экстремума и определить его тип, следует сформулировать достаточные условия. На практике используют два основных условия:

Первое достаточное условие экстремума: если в стационарной точке х=а производная меняет свой знак с плюса на минус (с возрастания на убывание), то функция у= в этой точке имеет максимум, если с минуса на плюс, то функция имеет минимум.

Первое достаточное условие обычно используют в случаях, когда производная имеет громоздкий вид. Если же вторая производная вычисляется достаточно просто, то удобно использовать следующее условие.

Второе достаточное условие: если в стационарной точке х=а вторая производная положительна, то функция в этой точке имеет минимум, если же отрицательна, то функция имеет максимум.

Таким образом, приведем схему определения экстремумов функции :

1. Определяем производную .

2. Находим стационарные точки функции из анализа области определения производной и уравнения .

3. Выбираем первое или второе достаточное условие. В последнем случае находим

4. Исследуем стационарные точки по достаточному условию, определяем наличие и вид экстремума.

5. Вычисляем экстремальные значения функции уэкстр.=f(хстац.).

 
 
Заметим, что, если интервал изменения функции ограничен, т.е. , то часто возникает задача отыскания наибольшего и наименьшего значений (глобальных экстремумов) функции на этом интервале, причем они могут далеко не всегда совпадать с локальными. Для решения проблемы сравниваются не только внутренние экстремумы, но и проверяются значения функции и на концах интервала. На чертеже показано, что глобальный и локальный минимумы совпадают и равны , но глобальный максимум не совпадает с локальным  


 







Дата добавления: 2014-10-22; просмотров: 925. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия