Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изгибы функции и их определение





В целом ряде практически важных случаев анализа деталей процессов необходимо более подробно описывать изменяемость функции у=f(x) на интервале:

Назовем функцию выпуклой вверх (или просто - выпуклой) на интервале , если значения функции на этом интервале находятся выше отрезка, соединяющего точки и и вогнутой (или выпуклой вниз), если ее значения находятся ниже такого отрезка. Точку с, в которой выпуклость сменяется вогнутостью (или наоборот) назовем точкой перегиба функции .  

Выпуклость, вогнутость и точки перегиба определяются и анализируются с помощью второй производной по следующим правилам:

1. Если значения второй производной на интервале отрицательны, то функция выпукла на этом интервале.

2. Если значения второй производной на интервале положительны, то функция вогнута на этом интервале.

3. Необходимым условием для точки перегиба является то, что в ней вторая производная либо равна нулю, либо бесконечна, либо не существует. Если при переходе через эту точку меняет знак, то это - достаточное условие перегиба.

Таким образом, для исследования функции на изгибы и точки перегиба, можно использовать следующую схему:

1. Определяем производную .

2. Находим стационарные точки из анализа области определения второй производной и решения уравнения .

3. Определяем знаки второй производной в интервалах между вычисленными точками и устанавливаем наличие точек перегиба и типы изгиба функции.







Дата добавления: 2014-10-22; просмотров: 670. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия