Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изгибы функции и их определение





В целом ряде практически важных случаев анализа деталей процессов необходимо более подробно описывать изменяемость функции у=f(x) на интервале:

Назовем функцию выпуклой вверх (или просто - выпуклой) на интервале , если значения функции на этом интервале находятся выше отрезка, соединяющего точки и и вогнутой (или выпуклой вниз), если ее значения находятся ниже такого отрезка. Точку с, в которой выпуклость сменяется вогнутостью (или наоборот) назовем точкой перегиба функции .  

Выпуклость, вогнутость и точки перегиба определяются и анализируются с помощью второй производной по следующим правилам:

1. Если значения второй производной на интервале отрицательны, то функция выпукла на этом интервале.

2. Если значения второй производной на интервале положительны, то функция вогнута на этом интервале.

3. Необходимым условием для точки перегиба является то, что в ней вторая производная либо равна нулю, либо бесконечна, либо не существует. Если при переходе через эту точку меняет знак, то это - достаточное условие перегиба.

Таким образом, для исследования функции на изгибы и точки перегиба, можно использовать следующую схему:

1. Определяем производную .

2. Находим стационарные точки из анализа области определения второй производной и решения уравнения .

3. Определяем знаки второй производной в интервалах между вычисленными точками и устанавливаем наличие точек перегиба и типы изгиба функции.







Дата добавления: 2014-10-22; просмотров: 670. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия