Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изгибы функции и их определение





В целом ряде практически важных случаев анализа деталей процессов необходимо более подробно описывать изменяемость функции у=f(x) на интервале:

Назовем функцию выпуклой вверх (или просто - выпуклой) на интервале , если значения функции на этом интервале находятся выше отрезка, соединяющего точки и и вогнутой (или выпуклой вниз), если ее значения находятся ниже такого отрезка. Точку с, в которой выпуклость сменяется вогнутостью (или наоборот) назовем точкой перегиба функции .  

Выпуклость, вогнутость и точки перегиба определяются и анализируются с помощью второй производной по следующим правилам:

1. Если значения второй производной на интервале отрицательны, то функция выпукла на этом интервале.

2. Если значения второй производной на интервале положительны, то функция вогнута на этом интервале.

3. Необходимым условием для точки перегиба является то, что в ней вторая производная либо равна нулю, либо бесконечна, либо не существует. Если при переходе через эту точку меняет знак, то это - достаточное условие перегиба.

Таким образом, для исследования функции на изгибы и точки перегиба, можно использовать следующую схему:

1. Определяем производную .

2. Находим стационарные точки из анализа области определения второй производной и решения уравнения .

3. Определяем знаки второй производной в интервалах между вычисленными точками и устанавливаем наличие точек перегиба и типы изгиба функции.







Дата добавления: 2014-10-22; просмотров: 670. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия