Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывность и разрывы функции





Функция f(x) называется непрерывной в точке x0 если она:

1. Определена в этой точке, т.е. существует f(x0).

2. Имеет предел в этой точке А = .

3. Пределсовпадает со значением функции А = f (x0).

Если хотя бы одно из этих условий нарушено, то функция разрывная в точке x0. Этот разрыв может быть конечен - скачок (разрыв первого рода), или бесконечен (второго рода).

Для функций, непрерывных в точке x0 сумма f1+f2, произведение f1 f2 и частное (при f2 ¹ 0) также непрерывны в этой точке.

Если функция y= f1(u) непрерывна в точке u0, а функция u= f2(x) непрерывна в точке f2(x0), то, при u0= f2(x0), сложная функция f1(f2(x)) тоже непрерывна в этой точке, т.е. можно записать: .

Функция y= f(x) называется непрерывной на интервале a x b, если она непрерывна в каждой точке этого интервала. При этом:

1. Она ограничена на этом интервале сверху и снизу (не может быть бесконечного значения).

2. Обязательно имеет минимальное и максимальное значения.

3. Если по концам интервала функция имеет разные знаки, то внутри интервала имеется хотя бы одна точка х=с, в которой f(с)=0 (корень функции).

 







Дата добавления: 2014-10-22; просмотров: 599. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия